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Abstract

Hash-based join is a compute- and memory-intensive al-
gorithm. It achieves good performance and scales well to
large datasets, if sufficient memory is available to hold the
hash table and the distribution of computing load across
nodes is balanced. In this paper, we compare three adaptive
algorithms that start with a partitioning of the hash table
across a group of nodes and expand during the hash table
building phase to additional resources, when memory on a
node is used up. The split-based algorithm partitions the
hash table range assigned to the node, on which memory is
full, into two segments and assigns one of the segments to
a new node in the system. The replication-based algorithm
replicates the hash table range on a new node. The hybrid
algorithm combines the first and second strategies in order
to address each strategy’s short comings. We perform an ex-
perimental performance evaluation of these algorithms on
a PC cluster. Our results show that among the three algo-
rithms, in most cases the hybrid algorithm either performs
close to the better of the two or is the best algorithm.

1 Introduction

This paper is concerned with efficient execution of the
equi-join operation, which is one of the most common
database operations. Several techniques have been devel-
oped for performing join operations efficiently [10, 25].
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Among many methods, hash-based join algorithms are con-
sidered to be fast and easy to implement. Hash-based joins
on large datasets are good candidates for parallelization as
they require high computing power and large memory space
to maintain intermediate data structures (i.e., the hash ta-
ble). A number of parallel algorithms have been devel-
oped [7, 14, 25, 26, 29, 32]. In these algorithms, the hash
table is partitioned into buckets, and the buckets are as-
signed to processors. Data skew is a challenging prob-
lem, in which some of the buckets receive more join ele-
ments to be processed, resulting in computational load im-
balance. Algorithms have been proposed and evaluated that
adaptively partition the hash table and distribute the buck-
ets and computations to achieve computational load bal-
ance [4, 8, 12, 13, 17, 18].

Most of these algorithms focus on improving perfor-
mance assuming a static parallel configuration with in-core
buckets. Bucket overflow, in which an in-core bucket be-
comes full, is an equally important problem. Hash based
joins scale well to larger datasets when there is enough
memory space to maintain the hash table. In some cases,
the size of a join relation may not be known a priori or may
not be estimated accurately. Consider a query that selects
a subset of two relations using user-defined filters and per-
forms a join operation on the selected elements. In order to
estimate the memory requirement, the relations can be sam-
pled and the select operations can be applied on the sam-
pled elements. However, sampling may be expensive, if the
user-defined filters are expensive, and may not give accu-
rate estimates. Moreover, in dynamic environments where
resources (i.e., the set of nodes in the environment) can be
shared by multiple queries submitted to the system, a query
may have to start execution using a small number of nodes
and dynamically allocate more resources as needed and as
they become available.



Algorithm 1 The basic hash-based join algorithm.
Allocate HashTable[0...N-1].
for each hash table position � do

HashTable[ � ] ����� .
for (each element � in R) do
��� HashFunction( � .join attribute).
HashTable[ � ] � HashTable[ � ] �	�
��� .

for (each element � in S) do
��� HashFunction( � .join attribute).
for (each element � in HashTable[ � ]) do

if ( � .join attribute == � .join attribute) then
Output r and s.

In this paper we present and evaluate three algorithms,
referred to here as Expanding Hash-based Join Algorithms,
to avoid bucket overflow. The split-based algorithm parti-
tions the hash table range assigned to the node, on which
memory is full, into two segments and assigns one of the
segments to a new node in the system. The replication-
based algorithm replicates the hash table range on a new
node. The third algorithm is a hybrid approach that com-
bines the first and second strategies. Our experimental eval-
uation of the algorithms on a PC cluster shows that the
replication-based algorithm performs better than the split-
based algorithm when data distribution is highly skewed
and/or the hash table has to be build using the larger of the
two relations. Otherwise, the split-based algorithm achieves
better performance, as it reduces the communication over-
head in the probing phase of the join operation. Among the
three algorithms, we observe that the performance of the
hybrid algorithm generally is close to the better of the other
two algorithms or better than both.

2 Overview: Hash-based Equi-Join Algo-
rithm

In this section we briefly describe the basic hash-based
join algorithm. Assume that we have two relations R and S.
The basic hash-based join algorithm consists of two phases;
the hash table building phase and the hash table probing
phase. One of the relations is chosen for building the hash
table, while the other relation is scanned for probing the
hash table. The algorithm is shown in Algorithm 1 – we
assume that relation R is used to build the hash table.

In the hash table building phase, a hash table is allocated
in memory. As is seen from the figure, a hash function is
applied on the join attribute of each element in relation R
and the element is inserted into the corresponding hash ta-
ble position. In the hash table probing phase, the same hash
function is applied on the join attribute of each element in
relation S. The elements that have been stored in the corre-
sponding hash table position during the hash table building

phase are searched for matches and matching pair of ele-
ments are output.

A simple parallelization of the algorithm partitions the
hash table into  buckets, where  is the number of proces-
sors in the system. When R is processed, a hash function is
applied to the join attribute of each element. According to
the hash value, the element is sent to the processor to which
the corresponding bucket is assigned. In the probing phase,
the elements of S are partitioned among the processors us-
ing the same hash function.

A variety of algorithms have been developed to carry out
join operations when the hash table does not fit in memory.
The basic out-of-core join algorithm partitions the hash ta-
ble into � buckets so that each bucket fits in memory. As in
the in-core join algorithm, relation R is partitioned among
the buckets using a hash function. The buckets are written
to disk. In the second phase, relation S is scanned and par-
titioned into buckets using the same hash function. These
buckets also are stored on disk. In the third phase, the basic
in-core hash-based join algorithm is applied to each pair of
buckets.

3 Related Work

Efficient execution of join operations is a widely studied
topic in database research [3, 6, 7, 8, 9, 16, 20, 21, 23, 24,
25, 26, 29, 31, 32, 33]. In this section we review some of
the previous work on parallel join algorithms.

DeWitt et al. [8] present four algorithms to improve
load balance in joins on parallel machines, when the data
is skewed. Their approach is to sample the relations that
will be joined to predict the amount of skew in the data
and choose the most appropriate algorithm to employ. The
predicted amount of skew is also used to determine a map-
ping of work to processors to achieve load balanced exe-
cution. Li et al. [18] examine techniques to handle data
skew for sort-merge join algorithms. Their goal is to min-
imize the disk overhead when skew is low and execute the
join operations efficiently when skew is high. Lerner and
Lifschitz [17] present a survey of various load balancing
techniques employed in parallel join algorithms. Bamha
and Hains [4, 5] present a data redistribution algorithm
for equi-join operations on distributed memory machines.
The algorithm uses histograms to compute the frequency
of join attribute values in a relation. The relation is redis-
tributed based on the frequency counts such that frequent
values are distributed evenly among processors. Imasaki
and Dandamudi [13] propose an algorithm that is based on
the master-slave paradigm. The master process dynamically
sends input data to slave processors and slave processors
perform local join operations.

Most of the previous work in parallel join algorithms has
focused on static, incremental, and dynamic methods for



achieving computational load balance on shared-memory
and distributed-memory machines. These algorithms do not
address performance issues when the hash table does not fit
in memory. Our approach differs from the previous work in
that the proposed algorithm attempts to avoid buffer over-
flow by dynamically allocating additional resources.

The algorithm presented by Amin et al. [2] uses addi-
tional resources when more memory space is needed. When
the available memory space is exceeded, the algorithm al-
locates a new processor and chooses one of the hash ta-
ble buckets, assigned to the current set of processors, to
partition. The elements of the bucket are redistributed be-
tween the new processor and the original processor using a
new hash function. The split-based algorithm presented in
this paper is based on the algorithm developed by Amin et
al. The other algorithms differ from this algorithm. In
the replication-based algorithm, the hash value range as-
signed to a hash table bucket, the size of which exceeds the
available memory, is replicated on the new processor. This
avoids the communication overhead because of redistribu-
tion of bucket entries. The hybrid algorithm combines the
two algorithms.

The Distributed Hash Table (DHT) is one of the core
substrate in many peer-to-peer systems to facilitate search-
ing [1, 11, 22, 27, 28, 30]. Decentralization, scalability
and availability are key requirements of a peer-to-peer sys-
tem. DHT proposals, including CAN [27], Chord [30], Pas-
try [28], and Tapestry [11], aim to address those require-
ments. In some aspects, DHT implementations are similar
to the implementation used in the split-based join algorithm
described in this work; hence, they could be employed in the
implementation of the split-based join algorithm. However,
since the main goal of the DHTs is to provide scalability
and availability even beyond thousands of peers, a hash ta-
ble lookup operation typically requires ���������
	�� steps. For
the problem described in this work, there are relatively a
small number of peers (i.e., processing nodes in the sys-
tem), peers are tightly coupled, and they are not transient.
Hence a much simpler mechanism such as a simple hash-
based mapping can be employed to identify the node con-
taining the relevant portion of the hash table in ������ time.

4 Expanding Hash-based Join Algorithms

In this section , we present three Expanding Hash-based
Join Algorithms (EHJAs), which are designed to use addi-
tional hosts to maintain the hash table in memory. The algo-
rithms are similar to the basic hash-based join algorithm in
that they consist of a hash table building phase followed by
a hash table probing phase. One of the relations is used to
build the hash table. The hash table is probed using the sec-
ond relation to find joining (matching) elements. The basic
idea behind the EHJA is to allocate a new join node and use

its resources when a join node runs out of memory during
the hash table building phase. In this paper, we assume that
the joining elements are either written to disk or forwarded
to the client or to the next stage in the query plan. Hence, no
bucket overflow is assumed to occur in the probing phase.1

The algorithms start with a set of join nodes. The hash
table range is partitioned into buckets and each join process
is assigned one of the buckets. Each bucket is associated
with a disjoint subrange of hash values. In an environment
where resources can be shared by other applications, one of
the objectives is to minimize execution time without wast-
ing resources. Allocating a large number of nodes would re-
sult in high performance since only few nodes, if any, would
likely run out of memory during the join processing. How-
ever, this also decreases the availability of resources to other
applications executing in the environment. In this paper, we
experimentally evaluate the impact on performance of the
number of initial join nodes. In future work, we plan to ex-
amine algorithms for efficient selection of the initial set of
join nodes.

4.1 System Architecture

The system architecture consists of three components: a
scheduler, data sources, and join processes.

4.1.1 Scheduler

The scheduler is responsible for coordinating the execution
of the algorithm. The scheduler maintains a list of working
join nodes and potential join nodes. A working join node
is a node to which a portion of the hash table range has
been assigned and on which a join process currently runs.
Potential join nodes are the nodes in the environment that
can be used to run additional join processes.

In the hash table building phase, when a memory full
message is received from a working join node � , a new join
node � is selected from the list of potential join nodes. In
our implementation, the node with the largest amount of
available memory is selected as the new join node when a
working join node is full. The goal of this approach is to
minimize the number of additional nodes. A join process
on node � is instantiated, the number of data sources and
the hash table range are sent to that process. The id of the
new join node is sent to node � so that the node can forward
to the new join node the data buffers that have been received
or pending from data sources but have not been fully pro-
cessed due to lack of memory space. The id of node �
and its hash table range is broadcast to the data sources so

1This phase also can be executed using an adaptive algorithm that will
expand to additional nodes to avoid memory overflow. The algorithms for
the table building phase can be adapted for the probing phase, because
operations performed on the elements of the second relation are similar to
those performed on the first relation elements.
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Figure 1. Execution of replication-based EHJA. (a) Initial configuration at the beginning of the hash
table building phase. (b) After bucket on one join node is full. (c) The hash table probing phase.

that the data sources update their local list of working join
nodes.

The scheduler is also responsible for synchronizing the
join processes and data sources between the hash table
building and hash table probing phases of the algorithm.

4.1.2 Data Sources

A data source provides the elements of the join relations
R and S to the join processes. Relations R and S can be
distributed over a number of nodes (or sites) in the environ-
ment. We should note that the two relations may be gener-
ated on the fly (e.g., as a result of a select statement in the
query plan) or read from disk on those nodes.

A data source keeps a buffer for each join process in the
system. When the elements of relations R and S are gener-
ated or retrieved from disk, they are inserted into the buffers
based on their hash values and the partitioning of the hash
table among the join processes. When a buffer is full, it is
sent to the corresponding join process.

When a data source receives a message from the sched-
uler process about addition of a new join node, it means
one of the working join nodes is full. Depending on the
algorithm employed, the full join node � is either moved
to the list of join nodes with full hash table buckets (the
replication-based and hybrid algorithms) or its hash range is
updated (the split-based algorithm), and the new join node
� is inserted into the list of working join nodes with its hash
range.

When a data source has finished processing all the ele-
ments of relation R, it waits for a start probe message from
the scheduler process to proceed to the hash table probing
phase. When that message is received, the lists of work-
ing and full join nodes are merged. The probing phase is
executed with the merged list of join nodes.

4.1.3 Join Processes

A join process is responsible for building and maintaining a
portion of the hash table and performing the join operations
on the local hash table. A join node is a node on which a join
process executes. For simplicity of presentation, we assume
that only one join process runs on a join node. Hence, we
use join node and join process interchangeably in this paper.

In the hash table building phase, data elements received
from data sources are inserted into the hash table based on
their hash values. If memory for data elements cannot be
allocated, the join process sends a memory full message to
the scheduler and receives from the scheduler the id of the
new join node. Note that during this information exchange,
data sources may keep sending data buffers to the join pro-
cess. Hence, there may be pending messages from data
sources. If the replication-based and hybrid algorithms are
employed, the join process is responsible for forwarding all
the data in these buffers to the new join process. If the split-
based algorithm is employed, the join process sends the new
join process only the portion of the data that belongs to that
process. In the hash table probing phase, the join process



receives the data elements of relation S and carries out the
join operation on these elements.

4.2 The Algorithms

4.2.1 Split-based Algorithm

The split-based algorithm is implemented using the adap-
tive algorithm proposed in [2] which is based on the lin-
ear and dynamic hashing scheme proposed in [19, 15]. The
hash table range is initially partitioned among  join nodes;
each node stores a single bucket. In the table building phase,
pairs of hash functions, ��� and ��� �����	� (where i = 0,1,2,...),
are used to address the buckets. The function �
� maps a
join attribute value � to bucket ������ �  ��� � � . A pointer,
referred to as the split pointer, is used to determine which
function should be used for a join attribute element. The
split pointer also points to the next bucket to be split, when
a bucket overflows. When a bucket, which is addressed by
� � , is split, the hash function to address the two new buck-
ets is set to ��� �����	� . The elements in the original bucket are
mapped to the new buckets by ��� �����	� . The split operation
results in inter-processor communication; the elements that
are hashed to the bucket portion assigned to the new join
node are sent to that node. The scheduler maintains a bar-
rier split pointer, which follows the split pointer and is in-
cremented only when the scheduler receives a done message
from the bucket that will be split. This pointer is necessary
to ensure that a bucket is not requested to split while it is
being split and that at most two hash functions are active
simultaneously. At the end of the table building phase, the
scheduler sends the final (i,split pointer) pair to data sources
so that they can apply the corresponding hash functions to
elements in the probing phase.

A more detailed description of the algorithm can be
found in [2]. The main characteristic of the algorithm is
that when bucket overflow occurs and new join nodes are
allocated, buckets are split among join nodes (working and
new join nodes). This operation effectively partitions the
hash table range among join nodes. When a split is per-
formed, some of the elements in the overflowed bucket have
to be transferred to the new join node. In the probing phase,
an element is sent to the join node, which holds the corre-
sponding hash table range. Thus, no extra communication
overhead is incurred in the probing phase.

4.2.2 Replication-based Algorithm

The replication-based algorithm starts with a set of working
join nodes. The hash table range is partitioned into buckets
and each join process is assigned one of the buckets.When
a working join node overflows its bucket in the table build-
ing phase, the hash table range assigned to the bucket is

replicated on a new join node. Further elements of rela-
tion R that map to that range are sent to the new join node.
Figure 1 illustrates an example execution. The hash table
consists of � elements and its range is initially partitioned
among three join nodes. Figure 1(b) shows the configura-
tion after the bucket with hash range �����������  is full. One
of the nodes in the potential join nodes list is added to the
set of working join nodes, and the node with the full bucket
is moved to the list of full nodes. The arrow between node
� and node � in the figure shows the fact that node � sends
the buffers that are waiting in the local message queue to
node � . Node � stops receiving any more join attribute el-
ements. Data sources are informed of the new join node
by the scheduler and direct the remaining elements that are
hashed to the same range, to that node.

The hash table probing phase is shown in Figure 1(c).
If a hash table range has been replicated during the table
building phase, the elements of the probe relation, whose
hash values fall into that range have to be sent to all of the
join processes that have the same hash table range. As a
result, if the algorithm expands to additional nodes during
the hash table building phase, the volume of communication
in the probing phase may increase.

4.2.3 Hybrid Algorithm

The split-based algorithm results in extra communication
in the table building phase, since elements in an over-
flowed bucket has to be partitioned between two nodes. The
replication-based algorithm eliminates this communication
overhead. However, it introduces overhead in the probing
phase, because an element that is hashed to the hash table
range that is replicated has to be broadcast to all the cor-
responding nodes. The hybrid strategy aims to reduce the
communication overheads in both phases by combining the
split- and replication-based algorithms. This algorithm in-
troduces an extra step, referred to here as reshuffling, be-
tween the table building and probing phases.

In the table building phase, the replication-based algo-
rithm is employed. After data sources finish processing the
first relation, some of the hash table ranges might have been
replicated. In the reshuffling step, all the join nodes are
grouped into sets based on the hash table ranges assigned to
them. That is, all the nodes with the same hash table range
are inserted into the same set. For each set, the reshuffling
step repartitions the corresponding hash table range among
the nodes in the set. We use a simple greedy heuristic to
split the hash table array. The heuristic operates as follows.
At the end of the table building phase, each node counts the
number of elements at each hash table position. A global
sum operation is performed among the nodes that share the
same hash table range so that the total number of entries at
each hash table position is computed. If there are � nodes



in a set, the hash table array is partitioned into � contiguous
sub-arrays so that the total number of entries in each array
is equal. The hash table entries are redistributed among the
nodes. At the end of the reshuffling phase, each join node is
assigned a disjoint subset of the hash table range and there
remain no replicated hash table ranges. The new partition-
ing is broadcast by the scheduler to all data sources. In the
probing phase, each data source uses the new partitioning
to determine to which node they send the second relation
tuples. We should note that a tuple is sent to only one node,
as in the split-based algorithm.

4.2.4 Performance Analysis

The performance difference between the split-based algo-
rithm and the hybrid algorithm mainly results from the dif-
ference in overhead of the split phase in the split-based al-
gorithm and of the redistribution phase in the hybrid algo-
rithm. Assume the bucket size is � bytes, the original num-
ber of buckets is 	 , and the final number of buckets is � at
the end of the table building phase. We define the expansion
factor ����� � and �	� as the time to transfer a single byte
across the network.

For the split-based algorithm, the number of split oper-
ations is equal to �����
� and each time the amount of data
to be transferred is �� . Thus, the total overhead ������ ���� is:
������ ���� � �����
� � �� � �	� .

For the hybrid algorithm, the amount of data to be ex-
changed in the reshuffling phase is ��� �� * � . Hence, the over-
head ����� ��� � �� is: ����� ��� �!�� � �"� ��

� � � �	� .
The above equations suggest that the overhead for the

split-based algorithm grows faster than that of the hybrid
algorithm as the expansion factor � increases.

5 Experimental Results

In this section, we present a performance evaluation
of the Expanding Hash-based Join Algorithms (EHJAs).
The experiments were carried out using a Linux cluster,
referred to here as OSUMed. OSUMed consists of 24
compute nodes and 1 front-end node. Each node is a
Pentium III 933MHz with 512MB of main memory and
300GB local disk space, interconnected with switched
100 Mb/s Ethernet.

Data Generation. In the experiments, we used synthetic
relations R and S, both of which share the same column
and row structure. Each element in a relation consists of
a 64-bit index ( # ), a 64-bit join attribute ( �%$ ), and 	 -byte
data. The join attribute of relations R and S were generated
using either Uniform or Gaussian distribution. Gaussian
distribution was used to model data skew. The random
numbers are based on user-specified mean and standard

deviation, which are individually set for each relation. The
relations were generated on-the-fly on multiple nodes as the
join operation progressed. This simulates data streaming
from a distributed database or table streams in a multi-join
operation. For the experiments in this paper, �'& and �'(
were generated with the same mean, sigma, and value
range.

Performance Results. The first set of experiments exam-
ines the effect of varying the number of initial buckets,
while the size of the relations is fixed. In the figures, “Out
of Core” (OOC) denotes the non-expanding algorithm, in
which only the initial set of join nodes are used. In this algo-
rithm, if the memory space allocated for hash table buckets
is exceeded, join is performed out of core. Figure 2 shows
that the performance of all four join algorithms improves
as the number of initial nodes (initial buckets) is increased,
as expected. When 16 nodes are allocated initially, the ag-
gregate memory space is sufficient to hold the hash table in
memory. Hence, all the algorithms achieve the same perfor-
mance. When there are few initial nodes, the three EHJAs
outperform the OOC algorithm, since they are able to avoid
buffer overflow and achieve better parallelism by recruiting
additional nodes as needed. Moreover, the split-based and
hybrid-based algorithms achieve better performance than
the replication-based algorithm because they introduce less
communication overhead. We also observe that the split-
based and hybrid algorithms are less sensitive to the num-
ber of initial join nodes. Figure 3 shows the table building
time for this set of experiments. The amount of extra com-
munication in the hash table building phase is shown in Fig-
ure 4 for the three EHJAs. The split-based and hybrid-based
algorithms have longer hash table building times than the
replication-based algorithm due to the higher communica-
tion overhead introduced by the split and reshuffling steps.
However, the benefits of better parallelism and less commu-
nication overhead in the probing phase outweighs the exta
communication overhead in the table building phase in our
experimental setup (see Figure 2). In Figure 5 we compare
the split and reshuffling times in the split-based and hybrid
algorithms, respectively. As is seen from the figure, if the
estimation of the initial number of nodes is highly inaccu-
rate, the split-based algorithm results in more overhead than
the hybrid algorithm. For the 16-node case in the figure, no
overhead is incurred since the hash table fits in aggregate
memory across 16 nodes.

The second set of experiments examines the effect of in-
creasing the relation size. The number of initial nodes is
fixed at four in these experiments. The size of relations R
and S was varied from 10M (10 Million) to 80M tuples. Fig-
ure 6 shows the total execution time, when R and S are the
same size and uniform distribution is used for tuple gen-
eration. The split-based and hybrid algorithms scale bet-
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Figure 3. Effect of varying the number of ini-
tial working join nodes in the table building
phase.

ter than the replication-based and OOC algorithms. This is
mainly because the algorithms will spread to more nodes
as the size of R increases. As a result, increasing number
of tuples in S means the replication-based algorithm will
have greater communication overhead in the probing phase.
The effect of increasing tuple size is shown in Figure 7. As
seen from the figure, the hybrid-based algorithm scales bet-
ter than the other two, because extra communication for a
tuple is done only once in the reshuffling step and no com-
munication overhead is introduced in the probing phase.

The execution times of the four algorithms are shown in
Figures 8 and 9, when the larger relation is used in the ta-
ble building phase. Normally, hash table should be built
from the smaller of the two relations in order to reduce the
chances of bucket overflow. However, in cases where one
relation is generated before or faster than the other rela-
tion (e.g., streaming data applications), one may not have
a choice but use the larger relation. As is seen from the fig-
ures, the replication-based algorithm achieves better perfor-
mance. In this particular case, the communication overhead
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Figure 4. Extra communication volume intro-
duced by different algorithms in the hash ta-
ble building phase.
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comparison in the hash table building phase.

in the reshuffling phase is larger than that in the probing
phase of the replication-based algorithm. Hence, the hybrid
algorithm does not perform as well as the replication-based
algorithm.

In the final set of experiments, the effect of data skew
is examined. The number of initial nodes is fixed at four,
and the sizes of R and S are set to 10M tuples each. Three
sets of R and S were generated. The first set was gener-
ated using uniform distribution, the second using Gaussian
with standard deviation of 0.001, and the third using Gaus-
sian with standard deviation of 0.0001, which represents a
highly skewed data distribution. The observed behavior is
that with higher data skew, larger number of tuples will be
hashed to a few join nodes, which creates memory and com-
putation imbalance. The execution time of the algorithms
is shown in Figure 10. The results show that all join al-
gorithms adapt well when the skew is not very bad (sigma
= 0.001). However, extreme data skew (sigma = 0.0001)
results in significant performance degradation, as expected.
The performance degradation of the hybrid algorithm is less
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Figure 6. The total execution time of the four
algorithms when the size of the relations is
varied.
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Figure 7. The total execution time of the algo-
rithms when the size of tuples is varied.

than that of the other algorithms; the split-based algorithm
has the worst performance among the three algorithms. We
attribute this result to the fact that the split-based algorithm
is likely to do a lot of splits and communicate the same tuple
many times, resulting in higher communication overhead in
the hash table building phase as shown in Figure 11. The
hybrid algorithm performs the best among the three strate-
gies. This algorithm not only reduces communication over-
head, but also does a better job of load balancing because
replicated hash table ranges are redistributed in the reshuf-
fling step.

Figures 12 and 13 show the load balance achieved by
the EHJAs with uniform and skewed data (sigma = 0.0001)
value distribution. As shown in the figures, the split-based
and hybrid algorithms both achieve good load balance when
data is generated using uniform distribution. However,
when data is extremely skewed, the split-based algorithm
suffers from load imbalance, whereas the hybrid algorithm
still maintains a relatively good load balance. We should
note that our main goal in this paper is to avoid bucket over-
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Figure 8. The total execution time of the al-
gorithms when the larger relation is used to
build the hash table.
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Figure 9. The table building time of the al-
gorithms when the larger relation is used to
build the hash table.

flow. Our results show that the reshuffling step of the hybrid
algorithm also helps in alleviating the computational load
imbalance due to data skew.

6 Conclusions

In this paper, we compared three adaptive hash-based
join algorithms that aim to avoid bucket overflow by allo-
cating additional hosts in the environment. An experimen-
tal evaluation of the algorithms was performed on PC clus-
ters. The experimental results show that the replication-
based algorithm should be preferred over the split-based
algorithm if the distribution of the join attribute values is
highly skewed and/or the larger relation has to be used to
build the hash table. Otherwise, the split-based algorithm
achieves better performance. Among the three algorithms,
on the average, the hybrid algorithm generally performs
close to the better of the two or is the best algorithm. A
common result across all the cases tested in this paper is that
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Figure 11. Communication overhead of the
algorithms when the distribution of join at-
tribute values is skewed.

the EHJAs achieve good performance by utilizing remotely
avaliable memory and computational resources, when large
scale equi-join operations are performed with limited mem-
ory per node. An EHJA can be an effective alternative to
an out-of-core algorithm when the sizes of the join relations
cannot be estimated efficiently and the resources in the en-
vironment are shared by other queries.

As future work, we plan to investigate the effect of differ-
ent network configurations and I/O systems on the relative
performance of different EHJAs. In this paper, we focused
on one-way join operation. We also plan to expand our work
to multi-way join operations as well. In a multi-way join op-
eration, performance can be improved if results from joins
at intermediate levels are maintained in memory.
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