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Abstract

Analysis of large and/or geographically distributed
scientific datasets is emerging as a key component of
grid computing. One challenge in this area is that sci-
entific datasets are typically stored as binary or char-
acter flat-files, which makes specification of processing
much harder. In view of this, there has been recent
interest in data virtualization, and data services to
support such virtualization.

This paper presents an approach for automati-
cally creating data services to support data virtualiza-
tion. Specifically, we show how a relational table like
data abstraction can be supported for complexr multi-
dimensional scientific datasets that are resident on o
cluster. We have designed and implemented a tool that
processes SQL queries (with select and where state-
ments) on multi-dimensional datasets. We have de-
signed a meta-data description language that is used
for specifying the data layout. From such description,
our tool automatically generates efficient data subset-
ting and access functions.

We have extensively evaluated our system. The
key observations from our experiments are as follows.
First, our tool can correctly and efficiently handle o
variety of different data layouts. Second, our system
scales well as the number of nodes or the amount of
data is scaled. Third, the performance of the auto-
matically generated code for indexing and extracting
functions is quite comparable to the performance of
hand-written codes.
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1 Introduction

Analysis of large and/or geographically distributed
scientific datasets [5], is emerging as a key component
of grid computing. A key challenge in this area is
that scientific datasets are typically stored as binary
or character flat-files. Such low-level layouts enable
compact storage and efficient processing. Because the
use of relational or other database technologies can
result in significant storage overheads and slower pro-
cessing, they have typically not been very popular in
most scientific communities.

The use of low-level and specialized data for-
mats, however, makes the specification of process-
ing much harder. Recognizing this, several ongoing
projects, such as BinX and Binary Format Descrip-
tion (BFD) [3], are proposing machine-interpretable
descriptions of binary data layouts. Data Format Def-
inition Language (DFDL) working group under the
Global Grid Forum (GGF) is trying to standardize
such efforts. While such proposals can allow precise
description of the datasets in a remote repository, they
do not alleviate the need for detailed understanding of
the formats, or the dependence of an application on a
particular low-level data layout.

In view of this, there has been recent interest in
data virtualization, and data services to support such
virtualization. In the mailing list of Global Grid Fo-
rum’s DAIS working group, the following definitions
were presented! “A Data Virtualization describes an
abstract view of data. A Data Service implements the
mechanism to access and process data through the Data
Virtualization”.

Using data virtualization and data services, low-
level, compact, and/or specialized data formats can
be hidden from the applications analyzing grid-based
datasets. However, supporting data virtualization can
require significant effort. For each dataset layout and
abstract view that is desired, a set of data services need

I Please see http://www-unix.gridforum.org/mail_archive/dais-
wg/Archive/msg00215.html



to be implemented. An additional challenge arises
from the fact that the design and implementation of
efficient data virtualization and data services often-
times require interaction of two complementary play-
ers. The first player is the scientist who possesses a
good understanding of the application, datasets, and
their format, but is less knowledgeable about database
and data services implementation. The second player
is the database developer who is proficient in the tools
and techniques for efficient database and data services
implementation, but has little knowledge of the spe-
cific application.

This paper proposes a meta-data and compiler-
oriented approach to facilitate a common meeting
ground for the two players and to enable automatic
creation of efficient data services to support data vir-
tualization. Specifically, we show how a relational ta-
ble like data abstraction can be supported for complex
multi-dimensional scientific datasets that are resident
on a cluster. By using a well-defined meta-data de-
scription language, the scientist and database devel-
oper together can describe the format of the datasets
generated and used by the application. Using a com-
piler that can parse the meta-data description and
generate code to navigate the datasets, the database
developer (or the scientist) can conveniently generate
data services that will serve the datasets.

There are two key aspects of our approach. First,
we have designed a meta-data description language
that can be used for describing a low-level data layout.
This description language is expressive enough to al-
low: 1) dataset physical layout within the file system of
anode, 2) dataset distribution on nodes of one or more
clusters, 3) the relationship of the dataset to the logical
or virtual schema that is desired, and 4) the index that
can be used to make subsetting more efficient. Second,
our tool automatically generates efficient data subset-
ting and access functions for a given meta-data de-
scription. These functions take the user query as input
and help create relational tables. The runtime sup-
port for these functions is provided by a middleware,
called STORM, that processes SQL queries (with SE-
LECT and WHERE statements) on multi-dimensional
datasets and provides services for data selection, data
partitioning, and data transfer operations on a parallel
system [10, 9].

Clearly, the virtualization we provide is also pro-
vided by relational and object-relational databases.
For read-only and very large scientific datasets, our ap-
proach offers at least two significant advantages. First,
the data can be kept in the original format it is gener-
ated from simulations or collected from instruments.
Second, the time and storage overhead associated with
loading the data in a database and managing it is not
required.

We have extensively evaluated our system. The

key observations from our experiments are as follows.
First, our tool can correctly and efficiently handle a
variety of different data layouts. Second, our system
scales well as the number of nodes or the amount of
data is scaled. Third, the performance of the auto-
matically generated code for indexing and extracting
functions is quite comparable to the performance of
hand-written codes.

2 Overview of the System and Moti-
vating Applications

In this section, we give an overview of our system.
We also describe some of the applications that have
motivated this work, and give details of the STORM
runtime system we use.

2.1 System Overview

As we will further establish through some examples,
scientific applications frequently involve large multi-
dimensional datasets. Particularly, the data generated
by scientific simulations or the data collected from sci-
entific instruments involves spatial and temporal coor-
dinates. Consider a scenario where such a dataset is
hosted on a remote repository. Scientists across the
grid will typically be interested in downloading a sub-
set of a dataset. The criteria used for subsetting can
include one or more of the following: 1) range of spa-
tial and/or temporal coordinates, 2) parameters used
for a specific simulation, 3) the set of attributes that
are of interest, 4) value of one or more of the attributes
of interest, and 5) the return value from a user-defined
function applied to one or more of the attributes.

If a dataset is stored as a flat-file or a set of flat-files,
a user will need to have a detailed understanding of the
layout to be able to select the values of interest. The
basic premise of our work is that a virtual relational
table view and SQL queries on such a virtual view
provide a very convenient yet powerful mechanism for
specifying subsets of interest.

Figure 1 (left) shows the canonical structure of the
queries. A specific example is shown in the right hand
side. The Data Elements clause as part of the Select
operation is used for specifying the attributes of inter-
est. The Ezxpression (after WHERE) can contain oper-
ations on ranges of values, whereas the Filter(Data El-
ement) allows the use of application-specific and user-
defined filter operations that are difficult to express
with simple comparison operations. Since our goal is
to support subsetting, we do not allow joins, aggrega-
tions, or group-by operations.

A high-level overview of our system is shown in
Figure 2. The underlying runtime system we use,
STORM, is described later in this section. The
STORM system requires the users to provide an indez
function and an extractor function. The index function



SELECT < Data Elements >
FROM < Dataset Name >
WHERE < Ezpression > AND

Filter(< Data Element >)

SELECT *
FROM IparsData
WHERE RID in (0,6,26,27) AND TIME > 1000 AND
TIME < 1100 AND SOIL > 0.7
AND SPEED(OILVX, OILVY, OILVZ) < 30.0;

Figure 1. Canonical Query Structure (left) and An Example Query from IPARS Application (right)
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Figure 2. Overview of Our System

chooses the file chunks that need to be processed for
a given query. The extractor is responsible for read-
ing the file(s) and creating rows of the virtual table.
Thus, the use of the STORM system itself requires
significant knowledge of the file layout and the index
that may be available.

2.2 Motivating Applications

This work is motivated by data-driven applications
from science, engineering, and biomedicine. These
applications include simulation-based studies for oil
reservoir management, water contamination studies,
cancer studies using Magnetic Resonance Imaging
(MRI), telepathology with digitized slides, and analy-
sis of satellite data. Here, we describe two applications
that are used as case studies in this paper.

Oil Reservoir Management: Cost-effective and
environmentally safer production of oil from reservoirs
is only possible with effective oil reservoir manage-
ment. A management strategy should integrate into
the decision process a good understanding of physical
properties of the reservoir. Although field instrumen-
tation has been enhanced over the years, most of the
time a partial knowledge of critical parameters such
as rock permeability is available. Thus, complex nu-
merical reservoir models are needed and it is essential
that geological uncertainity be incorporated into these
models. An approach is to simulate alternative pro-
duction strategies (number, type, timing and location
of wells) applied to realizations of multiple geostatis-
tical models [12]. A typical study involves a large col-

lection of simulations (also referred to as realizations)
that model the effects of varying oil reservoir proper-
ties (e.g., permeability, oil/water ratio, etc.) over a
long period of time. Simulations are carried out on a
three-dimensional grid. At each time step, the value
of seventeen separate variables and cell locations in 3-
dimensional space are output for each cell in the grid.
Each of the output variables are written to files. If
the simulation is run in parallel, the data for different
parts of the domain can reside on separate disks or
nodes.

Large scale simulations can generate tens of Giga-
bytes of output per realization, resulting in Terabytes
of data per study. Analysis of this data is key to
achieve a better understanding and characterization
of oil reservoirs. This can require access to subsets
of data in a distributed environment. Common anal-
ysis scenarios involve queries for economic evaluation
as well as technical evaluation, such as determination
of representative realizations and identification of ar-
eas of bypassed oil. An example query is “Find the
largest bypassed oil regions between time T1 and Ts in
realization A.”.

Satellite Data Processing: Analysis of data ac-
quired by earth-orbiting satellites can provide valu-
able information about regional and global changes.
A satellite dataset consists of a number of measure-
ments by a satellite orbiting the earth continuously [4].
While the satellite passes over a region, its sensors
record readings from the surface. Each measurement
is a data element and is associated with a location (lat-



itude,longitude) on the surface and the time of record-
ing. Five sensor values are stored with each data ele-
ment. Therefore, a data element in a satellite dataset
can be viewed as having 8 attributes (two spatial, one
time dimension, and five sensors).

A query specifies a rectangular region and a time
period. The query can also choose a subset of sensor
readings. A typical analysis processes the data for up
to a year and generates one or more composite images
of the area under study. Generating a composite image
requires projection of the globe onto a two dimensional
grid; each pixel in the composite image is computed
by selecting the “best” sensor value that maps to the
associated grid point.

The raw data from satellites is processed to cor-
rect for drift in instrument calibration. The processed
data is used to answer queries. Since common queries
are range queries over space-time dimensions, the pro-
cessed data is oftentimes partitioned into data chunks
and stored as a set of chunks in order to improve query
performance. Each chunk represents a subregion in the
space-time domain and contains all the sensor readings
whose coordinates fall into that subregion. A spatial
index is built so that chunks that intersect the query
are searched for quickly.

2.3 TheSTORM Runtime System

STORM is a middleware desgined to support data
selection, data partitioning, and data transfer oper-
ations on flat-file datasets hosted on a parallel sys-
tem [10, 9]. STORM is architected as a suite of
loosely coupled services. The query service is the en-
try point for clients to submit queries to the database
middleware. The data source service provides a view
of a dataset to other services. It provides support
for implementing application-specific eztraction func-
tion. An extraction function returns an ordered list
of attribute values for a tuple in the dataset, thus ef-
fectively creating a virtual table. The indexring ser-
vice encapsulates indexes for a dataset, using an index
function provided by the user. The filtering service is
responsible for execution of user-defined filters. After
the set of tuples that satisfy the query has been de-
termined, the data should be partitioned among the
processing units of the client program and transferred
from the server to those processors. The purpose of
the partition generation service is to make it possible
for an application developer to implement the data
distribution scheme employed in the client program at
the server. The data mover service is responsible for
transferring selected data elements to destination pro-
cessors based on the partitioning description generated
by the partition generation service.

The tool we describe in this paper is primarily re-
sponsible for automatically generating the index and
extractor functions. To enable this, the layout of the

data and the available index needs to be described in a
systematic fashion by the administrator managing the
data repository. For this purpose, we have designed a
meta-data description language. This is presented in
the next section. Section 4 describes how our tool au-
tomatically generates index and extractor functions.

3 Meta-data Description Language

This section describes the meta-data description
language we use as part of our system.

3.1 Requirementsand Overview

Our goal was to have a meta-data description lan-
guage which is very expressive, and particularly, can
allow description of: 1) dataset physical layout within
the file system of a node, 2) dataset distribution on
nodes of one or more clusters, 3) the relationship of
the dataset to the logical or virtual schema that is
desired, and 4) the index that can be used to make
subsetting more efficient. In addition, we also wanted
the language to be easy to use for data repository ad-
ministrators, and to serve as a convenient basis for our
code generation tool.

Though several notations already exist for meta-
data description, none of them meet all of the above
requirements. BinX and Binary Format Description
(BFD) [3] are for describing a single file and do not
conveniently allow description of index associated with
a dataset. HDF5 [8] is a data storage format, and not
a meta-data description. It requires data to be refor-
matted in a specific format, which can involve signifi-
cant overheads for large scientific datasets. However,
our language does use certain key-words and features
from HDF5.

While our current implementation is specific to the
meta-data description language we describe here, our
basic approach can be used for supporting virtualiza-
tion on top of datasets that use standards like HDF5,
or individual files that use descriptions like BinX or
BFD. Further, note that the description language we
have developed can easily be embedded in an XML file
and made machine independent. In our presentation,
though, we focus on the concepts associated with the
description language and do not use XML.

Our meta-data descriptor comprises three compo-
nents.

1. Dataset Schema Description: states the logical or
virtual relational table view that is desired.

2. Dataset Storage Description: lists the nodes and
the directories on the system where the data is resi-
dent.

3. Dataset Layout Description: describes the actual
layout of the data within and across different files.

The use of these three components in our system is
shown in Figure 3.
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Figure 3. Use of the Three Components of Meta-data Descriptor in Our System

Component I: Dataset Schema Description

Component III: Dataset Layout Description

[IPARS]

REL = short int
TIME = int

X = float

Y = float

Z = float

SOIL = float
SGAS = float

// {* Dataset schema name *}
// {* Data type definition *}

Component II: Dataset Storage Description

[IparsData] // {* Dataset name *}
// {* Dataset schema for IparsData *} }
DatasetDescription = IPARS
DIR[0] = osu0/ipars

DIR[1] = osul/ipars
DIR[2] = osu2/ipars
DIR[3] = osu3/ipars

}

Data { $DIR[$DIRID]/DATASREL $REL = 0:3:1 $DIRID = 0:3:1 }
Y} // {* end of DATASET

DaATASET “IparsData” { // {* Name for Dataset *}
DaTATYPE { IPARS } // {* Schema for Dataset *}
Datainpex { REL TIME }

DATA { DATASET iparsl DATASET ipars2 }
DATASET “iparsl” {
DATASPACE {

Loop GRID ($DIRID*100+1):(($DIRID+1)*100):1 {
XYZ

}

Dara { $DIR[$DIRID]/COORDS $DIRID = 0:3:1 }
} // end of DATASET “iparsl”
DATASET “ipars2” {

DATASPACE {

Loop TIME 1:500:1 {
LooP GRID ($DIRID*100-+1):(($DIRID-+1)*100):1 {

}

}

SOIL SGAS

“lpars2” *}

Figure 4. The Meta-data Descriptor for the IPARS Dataset

3.2 Detailed Description and An Example

To further explain the three components of our de-
scription language, we use a running example based
upon the IPARS dataset from oil reservoir simulation
studies [12]. Here, the dataset comprises several sim-
ulations on the same grid, each involving a number
of time-steps. These simulations are identified by a
realization identifier (REL). The X, Y, and Z coordi-
nates of each point in the grid is stored explicitly. For
each realization, each time-step, and each grid point,
a number of attributes or variables are stored in the

dataset.

The physical layout we consider is as follows. We
have a 4 node cluster. The grid is divided into four
partitions, and each node stores values of all attributes
for all time-steps and all realizations for one partition.
The X, Y, and Z coordinates for the grid points are
stored only once and in a separate file, called CO-
ORDS, as they do not change over time and realiza-
tions. For storing the values of attributes, a separate
file is used for each realization. In each such file, the
data is ordered by time-steps. For each time-step, we
store the value of the two attributes (SOIL and SGAS)



for all grid points in the partition. The spatial coor-
dinates of grid points are not stored explicitly in each
file, instead, the values of attributes SOIL and SGAS
are stored in the same order in which coordinates are
stored in the file COORDS.

The meta-data description is shown in Figure 4.
The first two components, the dataset schema and
dataset storage, are quite simple. We focus our discus-
sion on the dataset layout. This description is based
upon the use of six key-words: DATASET, DATATYPE,
DATAINDEX, DATASPACE, DATA, and Looprp. A
DATASET is a nested structure, which can comprise
of one or more other DATASETs. A DATASET can be
described by using DATATYPE, DATAINDEX, DATAS-
PACE, and DATA. DATATYPE can be used for relating
a DATASET to a schema (as shown in Figure 4), or
for defining new attributes that are not part of the
schema. DATAINDEX is used for stating the attributes
that can be used for indexing the data. DATASPACE
is used for the leaf nodes in the structure, i.e., for
DATASETS that do not comprise other DATASETs. It
describes the layout associated with each file in the
DATASET. For non-leaf nodes in the description, DATA
is used for listing the DATASETS that are nested. For
leaf nodes, DATA is used for listing the files.

In Figure 4, “IparsData” comprises “iparsl” and
“ipars2”. “iparsl” comprises a single file on each node,
which stores the X, Y, and Z coordinates for the grid-
points in the partition. Within a DATASPACE, the
key-word LoOP is used for capturing the repetitive
structure within a file. The variable $DIRID is used
for identifying the directory. Thus, the clause “Loop
GRID ($DIRID*100+41):(($DIRID+1)*100):1” im-
plies that we store X, Y, and Z coordinates for grid-
points 1 through 100 in the file residing on directory 0
(DIR]0]), grid-points 101 through 200 in the file resid-
ing on directory 1 (DIR[1]), and so on. (The number of
grid points on each node is identical in this example).
The DATA field as part of “iparsl” shows that four
different files are associated with this dataset, corre-
sponding to the four different directories listed earlier.

Now, let us consider the “ipars2” dataset. Each file
associated with this dataset stores the attributes SOIL
and SGAS for 500 time-steps and 100 grid-points. The
use of the same loop identifier GRID implies that val-
ues for these 100 grid-points are stored in the same
order as in the file COORDS. This dataset comprises
16 files, corresponding to the four directories and four
different RELs.

4 Automatic Virtualization

Meta-Data

We now describe the key aspects of how we generate
index and extraction class codes to be used by the
STORM system. Using the meta-data and the query,
the key data-structure we try to compute at runtime

Using

Data_Extract {
Find_File_Groups()
Process_File_Groups()

}

Find_File_Groups {
Let S be the set of files that match against the query
Classify files in S by the set of attributes they have
Let Si,...,Sm be the m sets
T = ¢
foreach {s1,...,8m} si € S;i {
{* cartesian product between Si,...,Sm *}

If the values of implicit attributes are not inconsistent {

T = TU{s1,...,8m}
}
}

Output T

}

Process_File_Groups {
foreach {s1,...,sm} € T
Find_Aligned_File_Chunks()
Supply implicit attributes for each file chunk
foreach Aligned File Chunk {
Check against index
Compute offset and length
Output the aligned file chunk

}
}

Figure 5. Data Extraction Analysis

is the set of aligned file chunks (AFC), each of which
comprises

{num_rows,{Filei,Of fset;, Num_Bytes1},...,

{Filem,Of f setm, Num_Bytes, }}

Here, num_rows denotes the number of rows of the
table that can be computed using these file chunks. m
is the number of chunks involved. A given set of AFCs
contain only one chunk from each file; note that there
may be multiple sets of AFCs from the same set of
files. Thus, m is also equal to the number of files that
are required to generate the table rows. For each file
chunk, we store the file name, the offset at which we
will start reading, and the number of bytes to be read
from the file to create one row. By reading the m files
simultaneously, with Num_Bytes_i bytes from the file
File;, we create one row of the table. Starting from
the offset Of fset;, num_rows x Num_Buytes; bytes
are read from the file File;. Aligned file chunks effec-
tively correspond to a vertical partitioning of the table
among the files that constitute the dataset. That is, a
data file can contain data elements associated with a
subset of table attributes. By determining the set of
files and the set of file segments that are aligned with



each other, portions of the table can be constructed us-
ing the compiler generated data extraction functions.

The algorithm we use is presented in Figure 5. In
our implementation, this algorithm is executed in two
phases. First, our tool parses the available meta-data
and generates code for indexing and data extraction
functions. At runtime, these functions take the query
as input and compute and read the set of AFCs. The
advantage of this design is that the expensive pro-
cessing associated with the meta-data does not need
to be carried out at runtime. At the same time, no
code generation or expensive runtime processing is re-
quired when a new query is submitted. For simplicity,
we present a single algorithm that combines the two
phases. The details of code generation are not pre-
sented in the paper.

There are two main steps in our algorithm. In the
first step, we find sets of files which may need to be
read together to compute rows of the relational table.
In the second step, we find the aligned file chunks that
must be retrieved from these sets of files. To explain
our algorithm, we consider the meta-data description
in Figure 4. The query we consider involves selecting a
subset with REL values of 0 and 1, and TIME ranging
from 1 to 100.

Initially, all files in the dataset are matched against
the range query. It is determined if a file has data
corresponding to the given query. For the example
we are considering, files DATA2 and DATA3 (in all
directories) will be excluded. This is because the file
names are related to the REL values in our meta-data
description. S is the set of files remaining after this
analysis.

Next, we divide the files on the basis of the at-
tributes whose value they store. In our example, the
files COORD in the four directories are put in the same
group, and the files DATAQO and DATA1 are put in an-
other group. In this example, we have two groups, Sy
and 52.

An important concept in our algorithm is implicit
attributes associated with files or file chunks. Consider
the file DIR[0]/DATAO. From the description of the
dataset, we can see that the value of REL is 0, and
the grid coordinates range from 1 to 100. Because
these attribute values or value ranges are not stored
explicitly, but instead inferred from the directory or
file name and the meta-data description, they are re-
ferred to as implicit attributes.

Our algorithm now tries to determine the sets of
files which can jointly contribute towards rows of a
table. We consider each possible {s1,...,sm,} such
that s; € S;. Then, we check if the value of the im-
plicit parameters are consistent or not. For example,
the range of grid coordinates for DIR[0]/COORD and
DIR[1]/DATAOQ are non-overlapping. Therefore, we
know that they cannot be used together for creating

a row of the relational table. The groups {s1,..., Sm}
that are not eliminated are put in the set 7. In
our example, eight such groups are put in the set
T, which are {DIR[k]/COORD,DIR[k]/DATAO0} and
{DIR[k]/COORD,DIR[k]/DATA1 }, with k ranging
from 0 to 3.

The next step in our algorithm involves deter-
mining aligned file chunks from the groups of files.
Given an m file group {s1,...,8m} € T, our goal
is to find file sections from each of the m files,
which meet two criteria. First, their layouts must
be identical. Second, the value of any implicit at-
tributes should also be identical. Consider the set
{DIR[0]/COORD,DIR[0]/DATAO0}. The inner loop
(over GRID) in DATAOQ has the same layout as the
file COORD. Therefore, the section of DATAO corre-
sponding to a specific TIME value forms an aligned file
chunks with the file COORD. For our example, a total
of 500 such aligned file chunk sets can be formed from
each set in 7. By using the query range, we can see
that only 100 of these should be processed. Finally, we
determine the file offsets, number of bytes to be read,
and the number of rows that can be computed.

5 Experimental Results

We have carried out a number of experiments
for evaluating our automatic data virtualization tool.
Specifically, we had the following goals in designing our
experiments: 1) Comparing our tool with an existing
relational database (PostgreSQL) for read-only queries
on large scientific datasets, 2) Testing the ability of our
code generation tool to handle a variety of layouts of
the same data, and evaluating the impact of layout on
performance, 3) Evaluating the scalability of our tool
as the number of data sources and size of the dataset is
scaled, and 4) Comparing the performance of automat-
ically generated indexing and extractor functions with
the hand-written versions, whose performance was re-
ported in earlier publications on STORM [9, 10].

The datasets and queries we use correspond to
two applications, oil reservoir management (Ipars) and
satellite data processing (Titan). Brief description of
these applications was presented in Section 2.2. Our
experiments were carried out on a Linux cluster where
each node has a PIIT 933MHz CPU, 512 MB main
memory, and three 100GB IDE disks. The nodes are
inter-connected via a Switched Fast Ethernet.

As listed above, our first goal was to compare our
virtualization approach with the use of an existing re-
lational database system. Note that the use of the
former involves a significant overhead for loading the
data and managing the database. However, our focus
here is on evaluating the query processing time only.
We used the Titan dataset with 6 GB raw data. The
total storage required after loading the data in Post-
greSQL was 18 GB. Figure 6 displays the execution
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Figure 6. Comparison of PostgreSQL and
STORM for Titan Dataset and Queries

time of the five queries listed in Figure 7. Data is in-
dexed by spatial coordinates in both the systems and
also by attribute S1 in PostgreSQL. Both the tools
have been run using their default parameters, without
any special tuning for this experiment.

Our tool has lower execution time for four of the five
queries. Our tool especially performs much better on
queries that requires the processing of large amount of
data. For example, PostgreSQL takes about 9,300 sec-
onds to execute Query 1, whereas the same query takes
only 2,600 seconds using our system. PostgreSQL per-
forms better than our system only when a small por-
tion of the data is accessed directly via an index, which
is the case for Query 4.

No. | Description

1 SELECT * FROM TITAN

SELECT * FROM TITAN WHERE X>=0 AND
Y<=10000 AND Y>=0 AND Y<=10000 AND
Z>=0 AND Z<=100

3 | SELECT * FROM TITAN WHERE
DISTANCE(X, Y, Z)<1000

4 SELECT * FROM TITAN WHERE S1 < 0.01

5 SELECT * FROM TITAN WHERE S1 < 0.5

Figure 7. Queries from Titan Dataset

Our previous work [9] also showed a similar perfor-
mance gain for the queries on the Ipars dataset. The
queries we used for that set of experiments are listed
in Figure 8.

Our second set of experiments focused on evaluat-
ing our tool as the dataset layout is modified. Our goal
was to demonstrate that our tool is able to correctly
and efficiently handle a variety of different layouts for
the same data. We used the Ipars dataset, the five
queries listed in Figure 8, and the following six differ-
ent file layouts:

e Layout I- All data is in one file, each tuple is stored as
a record and each time step is organized as a chunk,
i.e. the entire virtual table is stored in one file with
the tuples sorted on time.

e Layout IT - All data is in one file, which is organized
with each time-step as a chunk. Within each chunk,

each variable stored as an array.
e Layout III - Each time step is stored in a separate file

and each file contains tuples in a tabular fashion.
e Layout IV - Each time step is stored in a separate file

and each variable is stored as an array.
e Layout V - Data stored in 7 files where the first file

has X, Y, and Z coordinate values, and the remaining

attributes are divided between the remaining 6 files.
e Layout VI - Similar to Layout V, the attributes are

partitioned in 7 files, but in each file, each variable is
stored as an array.

Figure 9 shows the query execution times for the
above file formats. We also used the original layout
that was available to us from our application collabo-
rators. In this layout, referred to as L0, all attributes
are in different files. We compared the hand-written
version for L0 format with the compiler generated ver-
sions for LO and the six formats listed above. Since the
execution time of the first query is an order of magni-
tude higher than the others, it has been displayed in
a separate chart (Figure 9(a)).

Clearly, the execution time for all queries varies
with the dataset layout. For the format L0, all queries
involve opening 18 different files to compute one set of
aligned file chunks, which can slow down the process-
ing. Here, we can observe that the compiler generated
code is only up to 10% slower than hand-written code.
The difference is even less than 4% when a more com-
plex select expression (involving a user-defined func-
tion) is used, e.g., in the Query 4. For all other lay-
outs, the difference in execution times is very small,
even though there are significant differences in how
the data needs to be read. Overall, this experiment
has shown that our tool can correctly and efficiently
handle different layouts. The key advantage it pro-
vides is that index and extractor functions need not
be hand-written for every new data layout.

Our final set of experiments focused on our two re-
maining objectives: comparing hand-written and au-
tomatically generated codes, and evaluating the sys-
tem’s scalability. The comparison of hand-written and
compiler generated codes while scaling the number of
nodes on which the data is hosted is shown in Fig-
ure 10. The query we have used for this experiment
involves processing roughly 1.3 GB of Ipars data. The
difference between compiler generated code and hand-
written code varied between 5% to 34%, with an av-
erage difference of 16%. The execution times scaled
almost linearly for both the versions.

The last experiment, Figure 11, compares the per-
formance of compiler generated code against hand-
written code while varying the query size. Figure 11(a)
and Figure 11(b) displays the execution time of 4 dif-
ferent queries to Ipars and Titan datasets with increas-
ing query sizes. Ipars data was partitioned on 16 nodes
of the cluster, whereas the Titan data was stored on



Query No. | Type Query Expression
1 Full scan of the table SELECT * FROM IPARS
2 Subsetting using indexed attribute SELECT * FROM IPARS WHERE
TIME>1000 AND TIME<1100
3 Subsetting using indexed attribute SELECT * FROM IPARS WHERE TIME>1000
and filtering AND TIME<1100 AND SOIL > 0.7
4 Subsetting using indexed attribute and | SELECT * FROM IPARS WHERE TIME>1000 AND
filtering using a user defined function | TIME<1100 AND Speed() < 30
5 Accessing the data from a remote client | SELECT * FROM IPARS WHERE
TIME>1000 AND TIME<1050
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Figure 8. Queries from Ipars Dataset
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Figure 11. Execution Time With Varying
Query Sizes: Ipars (a) and Titan (b)

a single node. For Ipars data, the performance differ-
ence between compiler generated code and hand writ-
ten code was always within 17%, with an average dif-
ference of 14%. For the Titan data, the difference be-
tween compiler generated code and hand-written code
is always within 4%. For both these applications, the
processing time stays proportional to the amount of
the data retrieved by the query.

6 Related Work

Our work has some relationships with previous
efforts on meta-data descriptors, application-specific



data virtualization, and database systems.

BinX and Binary Format Description (BFD) [3] are
meta-data descriptors to give a machine-readable view
of a binary file. Our work is distinct in describing mul-
tiple files, including an index file, and the distribution
of the datasets on multiple nodes. HDF5 [8] is a data
storage format, and not a meta-data description.

There has been a lot of work on parallel, dis-
tributed, and grid-based databases, including support
for multi-dimensional or spatio-temporal datasets.
Sarawagi and Stonebraker showed how array chunks
could be described and accessed as objects in an
object-relational database [13]. The more recent work
in database community treats multi-dimensional data
as data cubes [14]. RasDaMan [2, 1] is a commer-
cially available domain-independent DBMS for multi-
dimensional arrays of arbitrary size and structure.
Our work is distinct in supporting an abstract view of
array-based datasets. Our work is also distinct from
the work on parallel and distributed databases [11] in
not requiring the datasets to be loaded in a specific
system. Magda is a system built on top of MySQL
for supporting Schemas on geographically distributed
and replicated databases?. The support for external
tables as part of Oracle’s recent implementation al-
lows tables stored in flat-files to be accessed from a
database3. The data must be stored in the table for-
mat, or an access driver must be written. Also, there
is no support for indexing such data.

OPeNDAP [6] provides data virtualization through
a data access protocol and data representation. How-
ever, this system requires that the datasets be con-
verted into a specific internal representation. SRS [7]
is a system specific to bio-informatics that uses a spe-
cial script language, called Icarus, to describe the con-
tents of a file.

7 Conclusions

This paper has focused on the problem of support-
ing a rich class of data subsetting operations on remote
data repositories that store scientific datasets in low-
level formats. With the current state-of-the-art, there
are two possible approaches to this problem. One in-
volves manually implementing layout-specific data ser-
vices and the other requires the dataset to be loaded
into an existing and general-purpose database system.

We have presented an automatic data virtualiza-
tion approach, in which a tool parses the meta-data
information, and generates data extraction code. This
code processes SQL queries with Select and Where ex-
pressions and creates virtual tables. We believe that
this approach offers significant advantages. The data
could be stored in the format it is generated in. The
overheads and the effort involved in loading the data

2See www.atlasgrid.bnl.gov/magda/info

3See www.dbasupport.com/oracle/ora9i/External_Tables9i.shtml
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in a database system is avoided. At the same time,
handling a new dataset layout or virtual view only
involves writing a new meta-data descriptor. Experi-
mental evaluation of our tool has demonstrated that
this approach can handle a variety of different lay-
outs, can scale to large datasets and large parallel
systems, and provide performance that is competitive
with hand-written codes.
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