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Abstract

Increasingly, a number of applications rely on, or
can potentially benefit from, analysis and monitoring
of data streams. Moreover, many of these applica-
tions involve high volume data streams and require dis-
tributed processing of data arising from a distributed
set of sources. Thus, we believe that a grid environ-
ment is well suited for flexible and adaptive analysis of
these streams.

This paper reports the design and initial evaluation
of a middleware for processing distributed data streams.
Our system is referred to as GATES (Grid-based Adap-
Tive Ezecution on Streams). This system is designed
to use the existing grid standards and tools to the ez-
tent possible. It flexibly achieves the best accuracy that
is possible while maintaining the real-time constraint
on the analysis. We have developed o self-adaptation
algorithm for this purpose.

Results from a detailed evaluation of this system
demonstrate the benefits of distributed processing, and
the effectiveness of our self-adaptation algorithm.

1 Introduction

The emergence of grids is providing an unprece-
dented opportunity to solve problems involving very
large datasets. However, the existing work in this area
has so far focused on static datasets resident in data
repositories [14]. Increasingly, a number of applica-
tions across computer sciences and other science and
engineering disciplines rely on, or can potentially ben-
efit from, analysis and monitoring of data streams.

In the stream model of processing, data arrives
continuously and needs to be processed in real-time,
i.e., the processing rate must match the arrival rate.
There are two trends contributing to the emergence of
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this model. First, scientific simulations and increasing
numbers of high precision data collection instruments
(e.g. sensors attached to satellites and medical imaging
modalities) are generating data continuously, and at a
high rate. The second is the rapid improvements in the
technologies for Wide Area Networking (WAN), as evi-
denced, for example, by the National Light Rail (NLR)
proposal and the interconnectivity between the Tera-
Grid and Extensible Terascale Facility (ETF) sites. As
a result, often the data can be transmitted faster than
it can be stored or accessed from disks within a cluster.

Many stream-based applications share a common set
of characteristics, which makes grid-based and adaptive
processing desirable or even a necessity. These charac-
teristics are:

e The data in these streams arrives continuously, 24
hours a day and 7 days a week.

e The volume of data is enormous, typically tens or
hundreds of gigabytes a day. Moreover, analyzing
this data to gain useful knowledge requires large
computations.

e Often, this data arrives at a distributed set of lo-
cations. Because of the volume of data, it is not
feasible to communicate all data to a single source
for analysis. These location can be across multi-
ple administrative domains and may only be con-
nected over a WAN.

e It is often not feasible to store all data for process-
ing at a later time. Also, it is important to react
to any abnormal trends or change in parameters
quickly. Thus, the analysis needs to be done in
real-time or near real-time.

Realizing the challenges posed by the applications
that require real-time analysis of data streams, a num-
ber of computer science research communities have ini-
tiated efforts. In the theoretical computer science or
data mining algorithms research area, work has been
done on developing new data analysis or data mining



algorithms that require only a single pass on the entire
data [20]. At the same time, database systems commu-
nity has been developing architectures and query pro-
cessing systems targeting continuous data streams [3].
Recently, a workshop was held as part of FCRC in San
Diego, targeting different aspects of data stream pro-
cessing?.

However, the existing efforts in this area have gen-
erally focused on data streams from a single source.
Many real applications involve data streams from a
distributed set of sources. We view the problem of
flexible and adaptive processing of distributed data
streams as a grid computing problem. We believe that
a distributed and networked collection of computing re-
sources can be used for analysis or processing of these
data streams. Computing resources close to the source
of a data stream can be used for initial processing of
the data stream, thereby reducing the volume of data
that needs to be communicated. Other computing re-
sources can be used for more expensive and/or cen-
tralized processing of data from all sources. Because of
the real-time requirements, there is a need for adapting
the processing in such a distributed environment, and
achieving the best accuracy of the results within the
real-time constraint. It will be desirable if such adap-
tation can be supported in a middleware, and does not
need to be hard-coded for a specific application. How-
ever, no existing grid middleware supports such func-
tionality.

This paper reports the design and evaluation of a
middleware for processing of distributed data streams.
Our system is referred to as GATES (Grid-based Adap-
Tive Execution on Streams). The three important as-
pects of this system are as follows. First, it is designed
to use the existing grid standards and tools to the ex-
tent possible. Specifically, our system is built on the
Open Grid Services Architecture (OGSA) model and
uses the initial version of GT 3.0. Second, the sys-
tem offers a high-level interface that allows the users
to specify the algorithm(s) and the steps involved in
processing data streams. The users need not be con-
cerned with the details like discovering and allocating
grid resources, registering their own data stream’s web
services and deploying the web services. Thus, the sys-
tem is self-resource-discovering.

Third, and probably the most significant aspect of
our system is that it flexibly achieves the best accuracy
that is possible while maintaining the real-time con-
straint on the analysis. To do this, the system monitors
the arrival rate at each source, the available computing
resources and memory, and the available network band-
width, and automatically adjust the accuracy of the
analysis. This is done by changing the sampling rate,

1Please see http://www.research.att.com/conf/mpds2003

size of the summary structure maintained, and/or the
choice of the algorithm to be used. While a user is re-
quired to expose the parameters that can be modified,
choosing their values to meet the real-time constraint
is done automatically by the system. We have devel-
oped a new algorithm for this purpose. In summary,
the system is self-adapting.

We have carried out a detailed evaluation of this
system using two application templates that are repre-
sentative of the distributed stream-based applications.
The main observations from our set of experimental
results are as follows. First, distributed processing of
data streams increases performance and can help meet
real-time constraint, with only a modest loss of accu-
racy. Second, self-adaptation can help choose a balance
between performance and accuracy, even as resource
availability is varied widely. Third, our self-adaptation
algorithm is able to tune adaptation parameters suc-
cessfully, as network bandwidth or processing power
may become a constraint.

2 Motivating Applications

This section describes a number of applications and

application classes that can benefit from grid-based and
adaptive processing of data streams.
Processing of Data from Scientific Instruments:
Many recent computational science or grid computing
projects involve large volumes of data continuously col-
lected through scientific instruments or experiments.
We will consider two specific examples here.

A large hadron collider (LHC) being setup in CERN
(located at Geneva) is expected to generate hundreds
of petabytes of data per year by the year 2007, and
exabytes by the year 2012 [8]. It is planned that this
data will be distributed to around 10 Tier 1 centers,
and then onto around 50 Tier 2 centers. As the data
is continuous or streaming in nature, and because of
the very high volume of data, the initial analysis or
filtering of data will need to be done at real-time. The
storage capacities will require that the data is filtered
by a factor of 10 to 107. Thus, it is important that
crucial information is extracted by real-time analysis
on continuous streams.

Another example we consider is the Earthscope
project [9]. The goal of this project is to combine geo-
physical measurements from several sources and enable
enhanced analysis. The total seismic data collected will
be around 40 TB per year. The data from different
sources will need to be amalgamated and analyzed in
real-time. Such real-time analysis could enable predic-
tion of ground motion from large earthquakes.
Computational Steering: A computational steering
system allows the user to interactively control scien-
tific simulations, while the computation is in progress.



Examples of computational parameters that could be
modified at runtime include the boundary conditions,
model geometries, or resolutions at different parts of
the grid [25]. Computational steering is typically done
by analyzing the data generated at various time-steps.
For example, if we detect certain features at a part of
a grid, we may want to increase the resolution for that
part of the grid.

This, however, poses two important challenges.
First, it is important to analyze the data in a short
time, so that simulation parameters can be modified
quickly. This can be difficult if the volume of data is
large. Second, analysis of data can require significant
computational resources, which may not be available
at the parallel platform being used for simulation.

With increasing WAN bandwidths, it is possible to
do such online data analysis using grid resources. Also,
there is usually some flexibility in the analysis of data,
i.e., the data generated could be sampled and then an-
alyzed. Clearly, the smaller the fraction of data that is
analyzed, the greater is the risk of inaccuracy. Thus,
we will like to analyze the largest fraction, as long as
the analysis could be done in a timely fashion. Unfortu-
nately, no middleware is currently available to support
analysis with a time-constraint in a grid environment.

Similar issues also apply in the emerging class of Dy-
namic Data-driven Applications and Systems (DDAS).
In this class of applications, simulation parameters are
adjusted by real observed data. It is even more likely
that data collection is at a different location than where
simulation is executed. Still, the volume of collected
data and need for adjusting simulation parameters in
a timely fashion poses a challenge.

Computer Vision Based Surveillance: Multiple
cameras shooting images from different perspectives can
capture more information about a scene or a set of
scenes. This can enable tracking of people and moni-
toring of critical infrastructure [7]. A recent report in-
dicated that real-time analysis of the capture of more
than three digital cameras is not possible on current
desktops, as the typical analysis requires large com-
putations. Distributed and grid-based processing can
enable such analysis, especially when the cameras are
physically distributed and/or high bandwidth network-
ing is available.

Online Network Intrusion Detection: Detecting
network intrusions is a critical step for cyber-security.
Online analysis of streams of connection request logs
and identifying unusual patterns is considered useful
for network intrusion detection [15]. To be really ef-
fective, it is desirable that this analysis be performed
in a distributed fashion, and connection request logs
at a number of sites be analyzed. Similar to the ap-
plications we described earlier, large volumes of data
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Figure 1. Overall System Architecture

and the need for real-time response make such analysis
challenging.

3 Middleware Design and Application
Programming Interface

This section describes the major design aspects of
our GATES system.

3.1 Key Goals

There are four main goals behind the design of the
system.

1. Use the existing grid infrastructure to the extent
possible. Particularly, our system builds on top of
the Open Grid Services Architecture (OGSA) [17],
and uses its reference implementation, Globus 3.0.
The Globus support allows the system to do au-
tomatic resource discovery and matching between
the resources and the requirements.

2. Support distributed processing of one or more data
streams, by facilitating applications that comprise
a set of stages. For analyzing more than one data
stream, at least two stages are required. FEach
stage accepts data from one or more input streams
and outputs zero or more streams. The first stage
is applied near sources of individual streams, and
the second stage is used for computing the final re-
sults. However, based upon the number and types
of streams and the available resources, more than
two steps could also be required. All intermediate
stages take one or more intermediate streams as
input and produce one or more output streams.



GATES’s APIs are designed to facilitate specifica-
tion of such stages.

3. Enable the application to achieve the best accu-
racy, while maintaining the real-time constraint.
For this, the middleware allows the application
developers to expose one or more adjustment pa-
rameters at each stage. An adjustment parameter
is a tunable parameter whose value can be mod-
ified to increase the processing rate, and in most
cases, reduce the accuracy of the processing. Ex-
amples of such adjustment parameters are, rate of
sampling, i.e., what fraction of data-items are ac-
tually processed, and size of summary structure
at an intermediate stage, which means how much
information is retained after a processing stage.
The middleware automatically adjusts the values
of these parameters to meet the real-time con-
straint on processing.

4. Enable easy deployment of the application. This
is done by supporting a Launcher and a Deployer.
The system is responsible for initiating the dif-
ferent stages of the computation at different re-
sources.

GATES is also designed to execute applications on
heterogeneous resources. The only requirements for ex-
ecuting an application are: 1) support for a Java Vir-
tual Machine (JVM), as the applications are written in
Java, 2) availability of Globus 3.0, and 3) a web server
that supports the user application repository. Thus,
the applications are independent of processors and op-
erating systems on which they are executed.

3.2 System Architecture and Design

The overall system architecture is shown in Figure 1.
The system distinguishes between an application de-
veloper and an application user. An application de-
veloper is responsible for dividing an application into
stages, choosing adjustment parameters, and imple-
menting the processing at each stage. Moreover, the
developer writes an XML file, specifying the configu-
ration information of an application. Such information
includes the number of stages and where the stages’
codes are. After submitting the codes to application
repositories, the application developer informs an ap-
plication user of the URL link to the configuration file.
An application user is only responsible for starting and
stopping an application.

The above design simplifies the task of application
developers and users, as they are not responsible for
initiating the different stages on different resources.
To support the easy deployment and execution, the
Launcher and the Deployer are used. The Launcher

is in charge of getting configuration files and analyz-
ing them by using an embedded XML parser. To start
the application, the user simply passes the XML file’s
URL link to the Launcher. The Deployer is responsi-
ble for the deployment. Specifically, it 1) receives the
configuration information from the Launcher, 2) con-
sults with a grid resource manager to find the nodes
where the resources required by the individual stages
are available, 3) initiates instances of GATES grid ser-
vices at the nodes, 4) retrieves the stage codes from
the application repositories, and 5) uploads the stage
specific codes to every instance, thereby customizing
it.

After the Deployer completes the deployment, the
instances of the GATES grid service start to make net-
work connections with each other and execute the stage
functionalities. The GATES grid service is an OGSA
Grid service [16] that implements the self-adaptation
algorithm and is able to contain and execute user-
specified codes.

3.3 Self-Adaptation API

We now describe the interface the middleware offers
for supporting self-adaptation. As we stated earlier,
the basis for self-adaptation is one or more adjustable
parameters, whose value(s) can be tuned at runtime
to achieve the best accuracy, while still meeting the
real-time constraint. To use such functionality, stream
processing applications are required to use a specific
API to expose adjustment parameters. Specifically, the
function specifyPara(init_value, maz_value, min_value,
incre_or_decre) is used to specify an initial value and a
range of acceptable values of an adjustment parameter,
and also state whether increasing the parameter value
results in faster or slower processing.

An example to show the usages of these APIs is as
follows.

public class Sampler implements StreamProcessor{

public void work(InputBufArray in,OutputBufArray out)
{
double sampling_rate ;
StreamServiceProvider.specifyPara(sampling_rate,

0.20,1,0.01,-1);

//Process data
while (true)
1{

sampling_rate = GetSuggestedValue();

In the example above, an adjustment parameter,
sampling rate, is specified. Using the function speci-
fyPara, it is stated that the initial value of this param-
eter is 0.20, the range of values is between 0.01 and



1, and an increase in the value of this parameter de-
creases the performance. During data processing, the
middleware’s self-adaptation algorithm automatically
keeps evaluating sampling rates. At the end of every
iteration, a new sampling rate is returned by the func-
tion getSuggestedValue(), and the new rate is used for
the computation in the next iteration.

4 Self Adaptation Algorithm

As stated before, an important functionality of the
GATES system is self-adaptation to meet the real-time
constraint while keep processing as precise as possible.
In this section, we present the algorithm we currently
use in our system.

[ Symbols || Definition

Variables
d Current length of the queue
d Average of the d values in recent times
d Long-term average queue size factor
t1 The number of times system was over-loaded
to The number of times system was under-loaded
w The number of times system was recently
over-loaded
b1, 03 Functions reflecting queue’s long-term load
b2 Functions reflecting queue’s recent load
P Adjustment parameter for a server
T No. of over-load exceptions that the server
reported to the sending server
T> No. of under-load exceptions that the server
reported to the sending server
o1 A function to factor dg in parameter
adjustment
o2 A function to factor ¢ (71,73) in parameter
adjustment
Constants
a Learning rate for d
w Window size
D Expected length of the queue
C Maximum capacity of the queue
P1,P>,P3 Weights to ¢1, ¢2, ¢3, respectively
LTy Minimum threshold for the average queue size
LT, Maximum threshold for the average queue size

Figure 2. Summary of Symbols Used

4.1 Algorithm Overview

An application built on the GATES middleware
comprises a set of pipelined stages. By modeling every
stage as a server and viewing the input buffer of a stage
as a queue of the server, we can get a queuing network
model of the system. As an example, the model of the
application shown in Figure 3 is presented in Figure 4.

Assume that the data arrives at a server in fixed-size
packets. Let the average data arrival rate be denoted
by A. the rate at which the server is able to consume
the packets is denoted by u.

QO :Stages
D :lnput buffer
—» : Network connections

Figure 3. An application that comprises three
stages

Qb Qc

QO :Servers
D  :Queues

Figure 4. A Queuing model of the system

If we have flexibility in controlling the accuracy of
the analysis, our goal is to adjust the parameters to
maintain a good balance between A and u. Clearly, if
p < A, the queue will saturate, and real-time constraint
on processing cannot be met. In this case, we need
to slow-down the processing that is performed by the
sending server, i.e., make the processing more accurate.
Alternatively, we can increase the rate of processing at
the current server, possibly losing some accuracy. At
the same time, if A is much lower than u, we are under-
utilizing the current server. In this case, we can speed
up the processing at the sending server.

As X and p are not fixed at runtime, we focus on
the current length of the queue, which is indicative of
the ratio between the two. Our objective is to keep the
average queue size within an interval between the two
pre-defined thresholds. This goal could be achieved by
dynamically adjusting the processing rates of the cur-
rent and the preceding server, which, in turn, is done
by properly tuning the value of adjustment parameters.

4.2 Detailed Description

This subsection gives a detailed description of the
algorithm. The list of terms used in our algorithm is
listed in Figure 2.

The biggest challenge in the algorithm is to correctly
weigh in the recent as well as long-term behavior of the
queue. The idea is that we should be able to adjust
to changes in the load quickly, but without making the
system unstable. For this purpose, we introduce a long-
term average queue size factor, denoted by d. Thus, the
two main steps in our algorithm are, evaluating d, and
adjusting parameters.

Evaluating Long-Term Load: This calculation is
based upon three distinct load factors and learning by
weighing these factors. These three load factors are



denoted by ¢1, and ¢» and ¢3, respectively. A number
of indicators of short-term and long-term load are used
in computing these load factors.

If the current length of the queue, d, is larger or less
than some thresholds, we say that the queue is over
or under-loaded. From the start of the system, ¢; is
the number of times the system was found to be over-
loaded and t; is the number of times the system was
found to be under-loaded. t; and t2 describe the long-
term behavior of the system. To focus on the short-
term behavior, we define the variable w and d. We
choose a window size W and record the last W times
the system was observed to be over or under-loaded.
w is a variable that is incremented by 1 for every oc-
currence of over-load within the window, and decre-
mented by 1 for every occurrence of under-load within
this window. Thus, |w| < W. d is the average of the
d values observed in recent times. Furthermore, D is a
user-defined expected length of the queue and C' is the
capacity of the queue.

We compute ¢; as follows.

h—ts if(t1+t2>0)

Pu(ty, t2) = i (1)
0 if (t; +to = 0)
wk Lok e™ T (ju] £ 0)
p2(w) = 2)
0 if (|w| = 0)
. D ifd<D
¢3(d) =< ) (3)
&L ifd>D

Both ¢1 and ¢3 reflect the queue’s long-term load,
whereas, ¢, reflects the queue’s recent load. The range
of values of ¢;(i = 1,2,3) is [-1,1]. Moreover, the
closer |¢;] is to 1, it is more likely that the unit is over
or under-loaded.

_ Now, we can use the following equation to calculate
d.

d=axd+ (1—a)* (P * ¢1(t1,t2)+
P2*¢2(w)+P3*¢3(d))*C

Here, Py, P», P; are the factors that give weight to
o1, ¢2, and ¢3, respectively, and satisfy the constraint
P+ P,+ P; = 1. Moreover, 0 < a < 11is a pre-defined
learning rate which helps remove transient behavior.

Similar to ¢;, d € [-C,C], and the closer |d| to
C, it is more likely that the unit is having very high
or low load. Particularly, when d exceeds the pre-
defined interval [LT}, LT,], the current server will re-
port an under-load or over-load exception to the pre-
ceding server. The number of these exceptions is a

factor used to tune adjustment parameters at the pre-
ceding server.

Parameter Adjustment: We now discuss how deci-
sions about adjusting parameters are made. In the fol-
lowing discussion, we consider how to adjust the value
of an adjustment parameter for processing at the server
B in Figure 4. We assume that there is a parameter
Pp at the server B; the increment of its value results
in increasing the processing rate (and decreasing the
accuracy). For such adjustment, we study both the
average queue size, dg, and indicator(s) of load at the
server C'. The specific indicator of load at the server C
that we use in our implementation is ¢ (T1,T>). Here,
T, and T5 are the times of the over-load and under-load
exceptions that the server C reported to the server B,
and ¢; can be computed by applying Equation 1.

We design Equation 4 to calculate the adjustment
of PB-

APB =d~B*01(d;3) - ¢1(T1;T2)*02(¢1(T17T2)) (4)

The motivation behind the equation is as follows. If
the value of dp is higher, we want to increase the value
of Pg. This is because we want to reduce the load at
B. At the same time, if the load at C is higher, i.e.,
¢1(T1,T») is a high number, we want to slow down the
rate at which B sends data to C. Therefore, we will
like to decrease the value of Pg. o1 and oy are used
to factor in the rate of variation of dg and D1 (T, T»),
respectively. If the values of dg and ¢1(Th1,T») are
unsteady, we want APp to be large. Ultimately, Pp
can quickly converge, and we also can keep the average
queue size dp within [LTy, LT>] and eliminate the load
exceptions reported from the server C.

5 Experimental Evaluation

This section presents results from a number of exper-
iments we conducted to evaluate our GATES system.
Specifically, we had the following goals: 1) Show how
distributed processing of data streams is more efficient,
2) Show how a system with self-adaptation of param-
eters can achieve the right trade-off between efficiency
and accuracy, and 3) Show how the self-adaptation al-
gorithm currently implemented in GATES is able to
choose the values of adaptation parameters when the
execution configuration and/or the application’s re-
source requirements change.

For efficient and distributed processing of dis-
tributed data streams, we need high bandwidth net-
works and a certain level of quality of service support.
Recent trends are clearly pointing in this direction,
for example, the five sites that are part of the NSF
funded Teragrid project expect to be connected with a
40 Gb/second network [28]. However, for our study, we



did not have access to a wide-area network that gave
high bandwidth and allowed repeatable experiments.
Therefore, all our experiments were conducted within
a single cluster. We introduced delay in the networks
to create execution configurations with different band-
widths.

5.1 Applications

The experiments we report were conducted using
two application templates, which are representative of
the applications we described in Section 2.

Our first application is count-samps and imple-
ments a distributed version of the counting samples
problem. The classical counting samples problem is
as follows [18]. A data stream comprises a set of in-
tegers. We are interested in determining the n most
frequently occurring values and their number of occur-
rences at any given point in the stream. Since it is
not possible to store all values, a summary structure
must be maintained to determine the frequently occur-
ring values. Gibbons and Matias have developed an
approximate method for answering such queries with
limited memory.

The problem we consider is of determining fre-
quently occurring values from a stream, sub-streams
of which arrive at different places. One option for
solving this problem is to communicate all sub-streams
to a single location, and then apply the original algo-
rithm. However, bandwidth limitations may not allow
this. An alternate solution will be to create a summary
structure for each sub-stream, and then communicate
these to a central location. We can expect that larger
the size of the summary, more accurate the final results
will be. For two sub-streams, we can range from storing
n/2 frequently occurring values from each sub-stream
to communicating entire sub-streams. Thus, the num-
ber of frequently occurring values at each sub-stream
is the adjustment parameter used in this application.

The second application is comp-steer, based
around the use of data stream processing for compu-
tational steering. Here, a simulation running on one
computer generates a data stream, representing inter-
mediate values at different points in the mesh used for
simulation. These values are sampled, communicated
to another machine, and then analyzed. The process-
ing time in the analysis phase is linear in the volume of
data that is output after the sampling. The sampling
rate, denoting the fraction of original values that are
forwarded, is the adjustment parameter used in this
application.

5.2 Benefits of Distributed Processing

Our first experiment demonstrated the benefits as-
sociated with distributed processing of data streams

Processing Average Avg.
Style Performance (sec.) | Accuracy

Centralized 257.5 .99

Distributed 180.8 97

Figure 5. Benefits of Centralized Processing:
4 Sub-streams

and used the count-samps application. Four different
streams, originating on four different machines, each
produced 25,000 integers. Each of these machines was
connected to a central machine, where the answer to
the query “top 10 most frequently occurring integers
and their frequency” were desired at any given time.
The available bandwidth between the stream sources
and the central machine was 100 Kilo-Byte/second.

We considered two different versions. In the first, all
data was forwarded to the central machine. All analy-
sis was done at this machine. In the second, 100 most
frequently occurring items at each stream were com-
puted and forwarded to the central machine, where the
final results were computed. Figure 5 compares the ex-
ecution time and accuracy between these two versions.
The accuracy is measured by how often the top 10 most
frequently occurring elements were correctly reported,
and how correctly their frequency of occurrence was re-
ported. Note that even the first version does not have
an accuracy of 1. This is because the algorithm we
implemented just takes one pass on the data and is
approximate [18].

Our results shows that distributed processing results
in faster execution, with only a small loss of accuracy.
Depending upon the rate at which data is generated,
faster execution resulting from distributed processing
can be crucial for meeting the real-time constraint. It
should also be noted that this experiment had only four
data sources, connected with a link having dedicated
bandwidth to the central node. With larger number of
data sources and/or other networking configurations, a
larger difference can be expected.

5.3 Impact of Self Adaptation

Our second experiment also used the count-samps
application. Here, we focused on showing the impact
of middleware-based self-adaptation on accuracy and
execution time, as the available network bandwidth is
varied. Similar to the previous experiment, there were
four different data stream sources and the final results
were desired at a central node. Five different versions
of the application were created. The first four versions
computed and communicated 40, 80, 120, and 160 most
frequently occurring items at each data source. The



Network Bandwidth 40 80 120 160 | Adaptive Version
(Kilo-Byte/Sec.) (sec.) | (sec.) | (sec.) | (sec.) (sec.)
1 462.3 | 612.9 | 459.9 671 463.5
10 187.7 | 193.3 | 509.1 | 302.1 234.9
100 246.4 | 466.7 | 296.2 | 371.6 387.1
1000 240.4 | 298.8 | 307.7 | 478.0 399.9

Figure 6. Execution Time of Different Versions

Network Bandwidth | 40 80 120 | 160 | Adaptive Version
(Kilo-Byte/Sec.)
1 .891 | 962 | .981 | .987 .986
10 .896 | .963 | .983 | .992 .986
100 .887 | .957 | .979 | .988 .974
1000 .879 | 963 | .983 | .989 .988

Figure 7. Accuracy of Different Versions

last version used the self-adaptation supported by the
middleware, and could automatically choose any value
between 10 and 240. Four different networking configu-
rations were considered, with a bandwidth of 1 KB/sec,
10 KB/sec, 100 KB/sec, and 1 MB/sec, respectively.

Figures 6 and 7 show the execution time and ac-
curacy, respectively, of these five versions, and on the
four different configurations. As the Figure 7 shows,
the accuracy can be quite low if a very small value of
the adjustment parameters is chosen. Similarly, Fig-
ure 6 shows that the execution time can be very large
if the value of the adjustment parameter is high and
the bandwidth is small. The self-adapting version was
able to provide a good trade-off between the execution
time and accuracy, i.e., it never had very low accuracy,
nor had very high execution times. In Figure 6, note
that higher value of parameter or lower bandwidth does
not always increase the execution time. We believe
that this is because of the impact of thread scheduler
in JVM. Our future implementations will address this
aberration in performance.

5.4 Self-Adaptation For Processing Constraint

Our third experiment used the comp-steer applica-
tion to demonstrate how the middleware can perform
self-adaptation to meet a processing constraint. Five
different versions of the application were considered.
The time required for post-processing was 1, 5, 8, 10,
and 20 ms/byte, respectively, in these five version. The
rate of data generation was approximately 160 bytes
per second. The initial value of the sampling factor
was fixed at 0.13 for all versions.

Figure 8 shows how the sampling factor chosen by
the middleware varies over time. For the first two ver-
sion, the value it converges to is 1, since processing is

4
—x- 1 ms/byte
—— 5 ms/byte
- 8msibyte ||
—+ 10 ms/byte
—- 20 ms/byte

Sampling Factor

. . . . . . . .
50 100 150 200 250 300 350 400 450 500
Time (second)

Figure 8. Self-Adaptation with Different Pro-
cessing Requirements

not a constraint. For the other three versions, it con-
verges to .65, .55, and .31. respectively. Thus, the
middleware is automatically able to choose the highest
sampling rate which still meets the real-time constraint
on processing.

5.5 Self-Adaptation for a Network Constraint

Our last experiment also used the comp-steer appli-
cation and focused on evaluating the self-adaptation
in response to a networking constraint. Here, after
sampling, the data is communicated over a link with
a bandwidth of 10KB/sec. We considered five differ-
ent versions, where the rate of data generation (before
sampling) was 5KB/s, 10KB/s, 20KB/s, 40 KB/s, and
80KB/s, respectively. The initial rate of sampling fac-
tor was chosen to be 0.01 for all cases.



1 x
—x— 5KB/s
4~ 10KB/s
0.9 , 7| -0~ 20kBis H
x| = 40KBIs
L7 —+ 80KB/s
081 < B
0.7 7
Y
5 06 e
3 -
& x
g o5 / o---¢---0--4
k= ’ e
3 / "
D 04t , _ X
% //,0/
’
031 4 //O/
L
L - =
0.2 Jo -
/’/ e e e ik s
01r 7
==

. . . . . . . I
0 5 10 15 20 25 30 35 40 45 50
Time (second)

Figure 9. Self-Adaptation with Different Data
Generation Rates

In Figure 9, we show how the middleware automati-
cally converges to a sampling parameter for each of the
different, versions. Overall, this shows that the middle-
ware is able to self-adapt effectively, and achieve high-
est accuracy possible while maintaining the real-time
processing constraint.

6 Related Work

The work that is probably the closest to our work
is the dQUOB project [26, 27]. This system enables
continuous processing of SQL queries on data streams.
Our work is distinct in the following ways. First, we
support an API to allow general processing, and not
just SQL queries. Second, the processing can be done
in a pipeline of stages. Third, our system is built on top
of Globus 3.0, and thus, exploits the existing support
for resource discovery. Finally, we support adaptation
in a distributed environment. As part of the Linked En-
vironment for Atmospheric Discovery (LEAD) project,
work is ongoing to incorporate dQUOB-like support in
grid environment.

Our work also derives from the DataCutter project
at the Ohio State University [5, 4]. Our API for spec-
ifying a pipeline of processing units is quite similar to
what DataCutter supports. However, our work is also
distinct in many ways. First, we support adaptation
to meet the real-time constraint. Second, our system
is built on top of the Open Grid Services Architec-
ture (OGSA). Third, we enable easy deployment in a
distributed environment, through an application con-
tainer.

Data stream processing has received much attention
in the database community [19]. Prominent work in
this area has been done at Stanford [2], Berkeley [11],
Brown and MIT [10], Wisconsin [30], among others.

The focus in this community has largely been on cen-
tralized processing of a single data stream. Our focus
is quite different, as we consider distributed process-
ing of distributed data streams, and use grid resources
and standards. Aurora* is a framework for distributed
processing of data streams, but only within a single ad-
ministrative domain [13]. Also, the focus in this work
is on scalable communication, and there is no support
for adaptation of the processing.

Application adaptation has been studied in many
contexts, including as part of a grid middleware. Cheng
et al. have developed an adaptation framework [12].
Adve et al. [1] have focused on language and compiler
support for adapting applications to resource availabil-
ity in a distributed environment. Our work is different
in having runtime support for self-adaptation to meet
real-time constraint. A number of projects have fo-
cused on operating systems, middleware, and network-
ing support for adapting applications to meet quality
of service goals [6, 21, 22, 23, 24]. SWiFT is a software
feedback toolkit to support program adaptation [29].
However, it does not adapt the computation or sup-
port the notion of adaptation parameters. Conductor
is a middleware for deploying adaptation agents into a
network [31]. It does not adapt the computation and
is not specifically designed for meeting real-time con-
straints on processing. In general, our work is also dif-
ferent from the above efforts in considering grid-based
distributed execution.

Our work is different in considering grid-based dis-
tributed execution and meeting real-time constraint.

7 Conclusions

With scientific instruments and experiments that
continuously generate data, and increasing network
speeds, we expect processing of data streams to be an
important application class for grid computing. We
have taken an important step in this direction, by de-
veloping a middleware system called GATES. GATES
allows processing on distributed data streams to be
specified as a pipeline of stages. By using Globus
3.0, the middleware allows resource discovery and au-
tomatic matching between the resources and require-
ments. By supporting an application container, the
middleware allows enables easy deployment of a dis-
tributed application.

Most importantly, our GATES system is self-
adapting and automatically tunes certain parameters
to allow the most accurate analysis, while still meeting
the real-time constraint. The middleware API allows
the application developers to expose certain adjustment
parameters. We have developed an algorithm for track-
ing the load at different processing stages and adjust-
ing the values of these parameters at runtime. Our



experimental results have shown that this algorithm is
effective.
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