
Privacy-Preserving Data Mining on Data Grids
in the Presence of Malicious Participants∗

Bobi Gilburd, Assaf Schuster, Ran Wolff

Computer Science Department,
Technion – Israel Institute of Technology

E-mail:{bobi,assaf,ranw }@cs.technion.ac.il

Abstract

Data privacy is a major threat to the widespread deploy-
ment of data grids in domains such as health care and fi-
nance. We propose a novel technique for obtaining knowl-
edge – by way of a data mining model – from a data grid,
while ensuring that the privacy is cryptographically secure.
To the best of our knowledge, all previous approaches for
solving this problem fail in the presence of malicious par-
ticipants.

In this paper we present an algorithm which, in addi-
tion to being secure against malicious members, is asyn-
chronous, involves no global communication patterns, and
dynamically adjusts to new data or newly added resources.
As far as we know, this is the first privacy-preserving data
mining algorithm to possess these features in the presence
of malicious participants. Simulations of thousands of re-
sources prove that our algorithm quickly converges to the
correct result. The simulations also prove that the effect of
the privacy parameter on the convergence time is logarith-
mic.

1. Introduction

The objective of a data grid is to maximize the availabil-
ity and utilization of data that was often obtained through
the investment of much labor and federal capital. Maximal
utilization would be achieved if the owners of different data
(resources) were able to share it with each other and with the
research community at large – i.e., make it available for ev-
eryone. Nevertheless, this is frequently prohibited by legal
obligations or commercial concerns. Such restrictions usu-
ally do not apply to cumulative statistics of the data. Thus,
the data owners usually do not object to having a trusted
third party (such as a federal agency) collect and publish

∗ We thank Intel Corporation and the Mafat Institute for Research and
Development for their generous support of this research.

these cumulative statistics, provided that they cannot be ma-
nipulated to obtain information about a specific record or a
specific data source. Trusted third parties are, however, dif-
ficult to find, and the procedure involved is necessarily com-
plicated and inefficient.

This scenario is most evident in the health maintenance
business. Health Maintenance Organizations (HMOs) have
a high interest in sharing medical data, both for public
health reasons, such as plague control and the evaluation
of different medical protocols, and for commercial reasons,
such as detecting medical fraud patterns or medical miscon-
duct. Similar examples can be found in the financial domain
where, for instance, account information should be shared
in order to detect money laundering. However, sharing data
is very problematic: it is legally forbidden to expose specific
records – i.e., a patient’s medical record – and it is commer-
cially undesirable to expose statistics about a single HMO
– e.g., mortality rates or the average expenditure per client.

Distributed data mining allows data to be shared without
compromising privacy. On the one hand, data mining tech-
niques have been shown to be a leading tool for data analy-
sis, and as such they are likely to satisfy researchers’ needs
as an interface to the data stored in a grid. On the other
hand, the models produced by data mining tools are statis-
tical and thus satisfy the privacy concerns of the data own-
ers. As a result, different HMOs can choose to reveal their
databases not for direct reading but rather to a distributed
data mining algorithm that will execute at the different sites
and produce a statistical model of the combined database.
That the algorithm produces statistics still does not guaran-
tee privacy: an HMO also has to make certain that the data
mining algorithm itself does not leak information. For in-
stance, an algorithm in which each HMO computes its mor-
tality rate and then sends it to a polling station which com-
putes the global statistics would not meet this criterion be-
cause the polling station would be informed of the mortal-
ity rate for each HMO. This calls for a specific type of dis-
tributed data mining algorithm that isprivacy-preserving.

Privacy-preserving data mining was first introduced in

2000 [3]: the idea there is to perturb the data by adding ran-
dom transactions to the database. These perturbations hide
the original data, but average out in the statistics.

An alternative approach [11, 19, 13] to privacy-
preserving data mining is to replace each message ex-
change in an ordinary distributed data mining algorithm
with a cryptographic primitive that provides the same in-
formation without disclosing the data of the participants:
for example, replacing a sum reduction with a cryptograph-
ically secure primitive in which the participants learn only
the total sum and not each other’s partial sums.

When dealing with very large systems, it is often rea-
sonable to permit learning partial sums, provided they in-
clude a minimal number of participants’ inputs. We formal-
ize this, definingk-privacyas the privacy attained when no
participant learns statistics of a group of less thank partici-
pants.k-privacy is a powerful, yet natural generalization of
the trusted third party model. It captures practical privacy
measures which are accepted by HMOs today [18]. Using
k-privacy, we can implement efficient cryptographically se-
cure primitives that do not require all-to-all communication,
and are thus practical for large-scale distributed systems.

When practiced well, the cryptographic approach guar-
antees the privacy of both individual records and source
statistics. However, all of the algorithms which have taken
this approach so far have assumed that all participants are
honest-but-curious: they may observe the protocol and may
try to glean additional knowledge from it (e.g., the data of
a specific patient or the statistics of a specific HMO), but
would otherwise follow the protocol exactly.

Unfortunately, the honesty assumption cannot be consid-
ered practical in data grid settings, where different resources
are maintained by different administrative authorities. The
lesson learned from innumerable attacks on distributed sys-
tems is that their maintenance level is never uniform nor suf-
ficient. Thus, it should be assumed that attackers will take
advantage of flaws in the software of some of the resources
in order to take them over.

In this paper we address the problem of preserving pri-
vacy while distributively mining association rules from a
large number of database partitions connected over a data
grid system, in the possible presence of malicious partic-
ipants. We make, however, two assumptions: that the at-
tacker cannot manipulate the database of a resource, and
that the attacked resources do not collude. The first assump-
tion is justified because the database of an organization is
usually very well protected. Moreover, once the attacker
gains access to the database records, privacy has already
been breached. If our first assumption does not hold, a ma-
licious database can be created to make the mining output
expose rules it would not expose otherwise, thus allowing a
variety of attacks. As for the second assumption, a group of
colluding participants can invoke a similar scenario by de-

ciding which of them will participate in the protocol, thus
controlling their cumulative database. Preserving privacy in
the presence of such attacks requires additional measures
which are outside the scope of this paper.

The main contribution of this paper is in employingk-
privacy for presenting a cryptographic privacy-preserving
association rule mining algorithm that is secure against ma-
licious participants, and in which the cryptographic primi-
tives involve only pairs of participants and are thus scalable.
We use a non-private association rule mining algorithm as
a foundation. We embody the requirement for an incorrupt-
ible database by depositing the database with an honest en-
tity we call theaccountant. An accountant receives queries
to the database and returns the correct answer. The accoun-
tant encrypts the answer with an encryption key shared by
the accountants, thus ensuring that the answer will not be
manipulated. The data mining protocol is then continued by
abroker, which manages the mined model, issues queries to
the accountant, and communicates with other brokers. The
broker is assisted in its operation by a third entity, acon-
troller, which has the decryption key and can thus tell the
broker when a message should be sent or the mined model
be further developed. Both broker and controller can be cor-
rupted, and if they are, they may behave maliciously.

Since our basic (non-privacy-preserving) algorithm is
extremely scalable in itself, and since we do not add any
global operators to it, the algorithm presented here can be
shown to scale to millions of resources – well above the cur-
rent requirements of grid systems. Furthermore, the algo-
rithm responds very efficiently to changes in the databases,
especially if the changes are minute and do not affect the al-
gorithm’s outcome.

A key quality of our algorithm is that it offers a trade-
off between the privacy attainable (measured in the mini-
mal size of the population on which the statistics are evalu-
ated) and the computational effort required to attain it. Still,
even when the maximal security level is required, the al-
gorithm maintains some of its qualities (such as the effi-
cient response to changes in the data). Finally, the algorithm
does not, as our analysis reveals, disclose any information
other than the list of frequent itemsets and the list of correct
rules, even in the presence of malicious participants. Mali-
cious participants can, at most, harm the validity of the re-
sult.

2. Related Work

The association rule mining (ARM) problem was first
described about a decade ago [1], and was formulated in a
distributed setting soon after [2, 6]. However, scalability for
several dozens of computing nodes was considered satis-
factory until recently. The first algorithm for the large-scale
distributed ARM problem was presented in [20].

Privacy-preserving data mining has received a lot of at-
tention in the past few years. Perturbation-based techniques
have been widely discussed (see [3, 7]). However, because
they disclose data source statistics, they are not fit for a dis-
tributed setting.

Cryptographically secure versions were developed for
three data mining algorithms: distributed ARM (the same
problem we discuss) [11], ARM in vertically partitioned
data [19] – i.e., where each transaction is split among sev-
eral nodes, and decision tree induction [13]. These are not
scalable because, in contrast to thek-privacy model pre-
sented here, the cryptographic primitives they use are global
and rigid. That is, the evaluation of every primitive requires
the participation of all nodes, and if the data at even one
node changes the process has to be repeated from scratch.

The first scalable algorithm for the privacy-preserving
distributed ARM problem was presented in [15]. Neverthe-
less, the algorithm is not secure against malicious partici-
pants. The same also holds for all previous work in privacy-
preserving data mining; they all assume semi-honest attack-
ers (those that must follow the protocol). Some authors re-
fer to the work of Goldreich, Micali and Wigderson [9] – a
method by which any private algorithm can be turned into
one that assumes malicious participants – as a basis for ex-
panding their work to the malicious model. However, in
[9], at the first stage (commitment), each participant must
send a private share of its input to all other participants.
In distributed data mining, that input is the local database.
Since each share must include as much information as the
database will provide for producing the mined model, the
method in [9] is not suitable for such scales of data as those
found in the data grid.

3. Problem Definition

k-privacy and k-security.Consider a set of participants,
each owning a private inputxi, who wish to jointly com-
pute the output of some common function of their inputs,
without revealing anything but the output. They do so by
running a protocol. The participants are said to follow the
honest-but-curious(also known assemi-honestor passive)
model [8] if they are assumed to follow the protocol exactly
but may observe it in order to try to glean additional knowl-
edge. Otherwise, the participants are said to follow thema-
liciousmodel [8].

k-privacy (k-security) is the privacy attained when no
participant learns combined statistics of a group of less than
k participants, in the presence of honest-but-curious (mali-
cious) participants. A rigorous definitions follow.

Definition 3.1 (k-TTP) Let P = {P1, . . . , Pn} be the set
of honest-but-curious (malicious) participants. Ak-TTP
that privately (securely) computes a functionf with n in-
puts is an honest, event-based entity, such that:

• Local Variables.For each participanti: xi, initialized
to ⊥, is the last input thek-TTP received fromi. Gi,
initialized to {φ}, is the set of the groups of partici-
pants about whom outputs were provided toi.

• Input. At any given timet, thek-TTP may receive the
current inputxi

t from participant i. Thek-TTP then
setsxi ← xi

t.

• Output.At any given timet, participanti may request
the k-TTP for an output for a group of participants
V . Thek-TTP then checks if the following condition
holds:

∀G ⊆ Gi :

∣∣∣∣∣∣
V4

 ⋃

j∈G

Gj

∣∣∣∣∣∣
≥ k.

(4 denotes the symmetric difference of sets.)
If the condition does not hold, thek-TTP ignores the

request. Otherwise, thek-TTP setsGi ← Gi ∪ {V },
and sends back toi the valuef (x′1, . . . , x

′
n) such that

x′i equalsxi if i ∈ V and⊥ otherwise. That is, thek-
TTP returns the output of computing the function over
the latest inputs of the participants inV only.

Definition 3.2 (k-privacy and k-security) A protocol is
said to bek-private (k-secure)if it can be simulated by an-
other protocol in which each participant is allowed to
communicate only with ak-TTP.

Data Grid Model. A data grid is composed of a group
of resources, each maintaining a database partition. Each re-
source is composed of three entities (see Figure 1): thebro-
ker – through which the resource communicates with the
rest of the data grid, thecontroller, which tells the broker
when to send messages and when to further develop the
mined model, and theaccountant, where the local database
is deposited. We denoteVt the set of resources at timet.
Communication between the resources takes place through
the exchange of messages via an overlay network. We as-
sume that an underlying mechanism maintains a communi-
cation tree that spans all the resources. We denoteEu

t the
set of edges colliding with a resourceu at timet.

Association Rule Mining Model. The association rule
mining (ARM) problem is traditionally defined as follows:
Let I = {i1, i2, ..., im} be the items in a certain domain. An
itemset is some subsetX ⊆ I. A transactiont is also a sub-
set ofI, associated with a unique transaction identifier. A
databaseDB is a list that contains|DB| transactions. Given
an itemsetX and a databaseDB, Support (X,DB) is the
number of transactions inDB which contain all the items
of X andFreq (X, DB) = Support(X,DB)

|DB| . For some fre-
quency thresholdMinFreq ∈ [0, 1], we say that an item-
setX is frequentin a databaseDB if Freq (X,DB) ≥
MinFreqandinfrequentotherwise. For two distinct frequent

Broker

Controller Accountant

Figure 1. Each resource is composed of the
accountant, the broker, and the controller.

itemsetsX andY , and a confidence thresholdMinConf ∈
[0, 1], we say the ruleX ⇒ Y is confident in DB if
MinConf · Freq (X, DB) ≤ Freq (X ∪ Y,DB). We call
confident rules between frequent itemsetscorrect. The so-
lution of the ARM problem isR [DB] – all the correct rules
in the given database.

Database Model.We assume the database is updated
over time (for instance, in the HMO application, patient
records are accumulated), and hence,DBt will denote the
database at timet and R [DBt] the rules that are correct
in that database. In distributed association rule mining the
database is partitioned among the resources. We denote
the union of partitions belonging to a group of resources
V ⊆ Vt by DBV

t ; that is,DBt equalsDBVt
t . When the

number of resources is large and the frequency of updates
high, it may not be feasible to propagate the changes to
the entire system at the rate they occur. Thus, it is benefi-
cial to have an incremental algorithm that can quickly com-
pute interim results and improve them as more data is prop-
agated. Such algorithms are calledanytime algorithms. We
denoteR̃u [DBt] the interim solution known to the resource
u at timet. We further assume that no transactions will be
deleted. This assumption can be made without loss of gen-
erality, because deleting a transaction can be simulated by
adding a ‘negating’ transaction instead (as is customary in
logging).

Attack Model. We assume the following attack model:
at any given point in time, an attacker selects an accountant,
a broker, or a controller and assumes control over it. Attack-
ers assuming control over accountants can monitor incom-
ing messages and internal states but have to provide the cor-
rect output for every query; attackers that take control over
controllers or brokers can do whatever they please. They
can resend or alter message contents, or refrain from send-
ing them altogether. However, we assume each attacker is
selfish and will not cooperate with others.

Privacy Model. A distributed ARM algorithm is said to

be k-resources-secureif it is k-secure when the resources
(clinics of the HMOs, for example) are considered as the
participants in thek-TTP definition. The algorithm is said
to bek̃-transactions-secureif it is k-secure when the trans-
actions (patients records, for example) are considered the
participants. For simplicity, in this paper we setk andk̃ to
be equal and define an algorithm ask-secureif it is both
k-resources-secureandk-transactions-secure.

4. Prerequisites

The work presented here relies on two bodies of re-
search: a scalable algorithm for association rule mining
which does not require global communication and a cryp-
tographic technique called oblivious counters. A brief de-
scription of these methods follows.

4.1. A Scalable Distributed Association Rule Min-
ing Algorithm – Majority-Rule

In a previous paper [20] we describeMajority-Rule –
a highly scalable distributed ARM algorithm (non-privacy-
preserving). The algorithm is based on two main inferences:
That the distributed ARM problem is reducible to a se-
quence of majority votes, and that if the vote is not tied, ma-
jority voting can be done by a scalable algorithm – which
we also present in that paper. Since it turns out that the fre-
quency of an overwhelming number of candidate itemsets
is significantly different fromMinFreq (i.e., the vote is not
tied), the outcome of these two observations is a local, and
thus highly scalable, distributed ARM algorithm.

The input to theScalable-Majorityalgorithm is a bit
at each nodeu and a globally known majority thresh-
old λ. Nodes communicate by sending pairs〈s, c〉 to each
other, and keep records of the last message sent to each
neighborv – 〈sumuv, countuv〉 – and the last received –
〈sumvu, countvu〉. It is natural to represent the input bit
as a message from⊥. We thus denoteNu

t asEu
t ∪ {⊥u}.

Thus, sum⊥u equals one if the input bit is set and zero
otherwise, andcount⊥u equals one. The node will com-
pute∆uv = (sumuv + sumvu) − λ (countuv − countvu)
and ∆u =

∑

vu∈Nu
t

(sumvu − λcountvu). u will send a

message tov upon first contact with it and in the case
that (∆uv ≥ 0 ∧∆uv > ∆u) ∨ (∆uv < 0 ∧∆uv < ∆u),
and will reevaluate the condition on every change in∆u

and∆uv. In both cases the message will equal the sum of
the messages received from other neighbors:

〈 ∑

wu 6=vu∈Nu
t

sumwu,
∑

wu 6=vu∈Nu
t

countwu

〉
.

Having received〈s, c〉 from v, u will set sumvu to s and
countvu to c. It is easy to see that whenScalable-Majority

terminates (i.e., no more messages are to be sent) all nodes
compute the same sign for∆u; that is, they agree on the ma-
jority.

To see howScalable-Majoritytranslates into an associ-
ation rule mining algorithmMajority-Rule, consider a ma-
jority vote in which the transactions vote over every candi-
date itemset, with each transaction voting one if it contains
the itemset and zero otherwise, and withλ set toMinFreq.
A positive majority would mean that the itemset is frequent.
Similarly, to decide whether a rule is confident, the transac-
tions again must vote. This time only transactions that in-
clude the left-hand side of the rule vote, and their vote is
one if they contain the right-hand side and zero otherwise;
λ is set this time toMinConf. Naturally, with databases con-
taining many transactions,sum⊥u andcount⊥u are set ac-
cording to the agglomerated vote.

It is left to show how candidates are generated. Note that
in Majority-Rulecandidates must be rules. This is because
Majority-Ruleis an anytime algorithm, and as such, it can-
not wait for termination before it produces rules. Here a
generalization of Apriori’s [17] criterion is used: Each re-
sourceu generates initial candidate rules of the form∅ ⇒
{i} for eachi ∈ I. Then, each time it updates the candidate
rule set, it generates, for each rule∅ ⇒ X ∈ R̃u [DBt], new
candidate rulesX \ {i} ⇒ {i} for all i ∈ X. Additionally,
the resource will look for pairs of rules iñRu [DBt] which
have the same left-hand side and right-hand sides that dif-
fer only in the last item –X ⇒ Y ∪{i1} andX ⇒ Y ∪{i2}.
For everyi3 ∈ Y , the resource will verify that the rule
X ⇒ Y ∪ {i1, i2} \ {i3} is also correct, and then gener-
ate the candidateX ⇒ Y ∪ {i1, i2}. It can be shown that
the minimal set of candidate rules is created whenR̃u [DBt]
is 100% precise [20].

4.2. Oblivious Counters

We denote a public-key cryptosystem fromZN by
(E, D): E(m) is the encryption of a given plain text
m ∈ Zn using the encryption key, andD(c) is the de-
cryption of a given cipher textc using the corresponding
decryption key.(E, D) is calledprobabilistic[10] if the en-
cryption process involves a random element, such that two
ciphers encrypting the same plain are seemingly nonre-

lated. We denotẽE (x) – the rerandomization ofE (x) – a

different cipher such thatD
(
Ẽ (x)

)
= D (E (x)).

A public-key cryptosystem(E,D, A+, A−) is calledad-
ditively homomorphicif there exist efficient algorithmsA+

andA− that allow the encryption ofx+y or x−y to be effi-
ciently calculated, givenE (x) andE (y), without knowing
the decryption key. That is, for allE(x), E(y):

D
(
A+ (E (x) , E (y)))

)
= x + y,

D
(
A− (E (x) , E (y))

)
= x− y.

In this work we use an additively homomorphic prob-
abilistic public-key cryptosystem, which has the addi-
tional property thatA+ andA− do not require knowledge
of the encryption key. Such a cryptosystem can be eas-
ily constructed from any two homomorphic cryptosystems:
messages are first encrypted using the first cryptosys-
tem, then their encryption is signed using the second1.
We use such a cryptosystem for implementingoblivi-
ous countersby which one can add two ciphers without
knowing their plain, and without knowing either the en-
cryption or decryption keys. Furthermore, by usingA+ it-
eratively, one can easily calculateE (m · x) from E (x)
for some m ∈ N. In the interest of clarity, we mark
E (x) +̇E (y) for A+ (E (x) , E (y)), E (x) −̇E (y) for
A− (E (x) , E (y)), m∗̇E (x) for E (m · x), and

∑̇
E (xi)

for A+ (...A+ (A+ (E (x1) , E (x2)) , E (x3)) ...).
We employ two standard extensions to the cryptosys-

tem. The first is to use standard shifting techniques in or-
der to support the encryption of negative integers. The sec-
ond is to extend the encryption and decryption functions to
work over a tuple of integers while keeping the homomor-
phic property for each single element. That is:

D
(
A+ (E ((x1, x2, . . . , xp)) , E ((y1, y2, . . . , yp)))

)
=

(x1 + y1, x2 + y2, . . . , xp + yp) .

This can be implemented, for example, by en-
coding (x1, ..., xp) ∈ ZN1 × · · · × ZNp as
x1N1 + x2N2 + ... + xp−1Np−1 + xp before en-
cryption, and using modulo calculations for decoding after
decryption.

5. k-secure Distributed Association Rule Min-
ing

We now describeSecure-Majority-Rule, a k-secure dis-
tributed association rule mining algorithm. The master plan
of Secure-Majority-Ruleis similar to that ofMajority-Rule:
the resources perform majority votes over candidate rules
to decide whether they are frequent and confident. How-
ever, inSecure-Majority-Rulethe candidates are counted in
the local database by the accountant, which then encrypts
the count into oblivious counters using an encryption key
known only to accountants. The broker knows neither the
decryption nor the encryption keys. This ensures that a bro-
ker cannot discover the data in messages it receives from
its neighbors, nor can it forge encrypted counts. Only con-
trollers can decrypt the oblivious counters. However, a con-
troller will never be given the oblivious counter directly. In-
stead, whenever a broker has to decide whether to send a
message to its neighbor, it performs a secure protocol with

1 We base our simulations on the popular Paillier [14] probabilistic ad-
ditively homomorphic cryptosystem.

a controller, by the end of which the broker learns whether
the message should be sent and the controller learns noth-
ing. Also, whenever new candidates should be generated,
the broker performs a similar protocol with a controller, by
the end of which the broker learns the new candidate set
and nothing more and the controller learns nothing. Finally,
to prevent malicious brokers from forging messages, an ac-
counting field is included in every message. To prevent re-
transmission of old messages, timestamps are used.

We begin by addressing the problem of maintainingk-
privacy.k specifies the least size of a group for which our
algorithm allows learning combined statistics (majority vote
of the participants in this group). We achieve this by mak-
ing sure that as long as data gathered for a rule is not based
on at leastk additional database portions and at leastk addi-
tional transactions than in the last query, the resource behav-
ior is independent of the data and therefore does not disclose
anything about it. Then we proceed to address the problem
of malicious participants.

5.1. Maintaining k-privacy

Consider a system composed of brokers running
Majority-Rule with all votes, and consequently all mes-
sages, encrypted by the accountant in oblivious counters.
Instead of maintainingsumuv, countuv, sumvu, countvu,
∆u, and∆uv, a broker will maintain their encrypted ver-
sions: sumuv

enc, countuv
enc, sumvu

enc, countvu
enc, ∆u

enc, and
∆uv

enc. count counts transactions. But, in order to main-
tain k-resources security, we also need to count resources.
For this purpose we add a resource counter,num, and like-
wise maintainnumuv andnumvu. When the broker needs
to send a neighbor a message that sums the votes pro-
vided by the rest of its neighbors, it will use theA+ algo-
rithm to sum the counters.

A problem arises when a broker needs to evaluate a
counter; for example, when it needs to learn whether the
value it hides is greater than zero (that is, the value’s sign).
For this, it must consult with the controller. Nevertheless, it
is essential that the controller not learn the value ofx. This
is a standard secure function evaluation (SFE) problem [9]
between two participants where the input of the broker is
the encrypted oblivious counter, the input of the controller
is the decryption key, and the function, whose output should
be revealed to the broker only, is the sign of the value en-
crypted by the counter. In [9], and in many later papers, gen-
eral techniques for such evaluations are given. For our spe-
cific problem, evaluating the sign of an encrypted counter,
several ad hoc solutions can be employed with higher per-
formance. One example is to use the oblivious counters
based on [12], which then allow evaluating the sign of an
encrypted counter based on its most significant encrypted
bit only.

A broker will use such an SFE primitive on two occa-
sions. The first is when a brokeru in Majority-Ruleevalu-
ates theMajority-Rulecondition on∆u and∆uv to decide
whether a message should be sent to a neighborv. In this
case the broker will initiate SFE with the controller, where
the condition to be evaluated (true means that a message
should be sent) is: For the candidate rule considered, either
theMajority-Rulecondition over∆u

enc and∆uv
enc evaluates

true, or the difference between the current and previous val-
ues encrypted by

∑̇
v∈Nu

t
countuv

enc is less thank (mean-
ing there are less thank new transactions than in the last
query), or the difference between the current and last val-
ues encrypted by

∑̇
v∈Nu

t
numuv

enc is less thank (meaning
it counts less thank new database partitions than in the last
query).

The second occasion is whenu needs to generate new
candidates. In this case it will initiate SFE with the con-
troller in order to discover, for each candidate whose oblivi-
ous counters have changed, whether the rule is correct. The
condition to be evaluated in that case is that the value en-
crypted by∆u

enc is at least zero, and the differences between
the current and last values encrypted by

∑̇
v∈Nu

t
countuv

and
∑̇

v∈Nu
t
numuv are at leastk. It will then generate

new candidates according to the criterion defined in the
Majority-Rulealgorithm.

5.2. Binding malicious participants to the protocol

Messages exchanged between brokers consist of obliv-
ious counters. When sending a message to a neighbor,
Majority-Rule dictates that the broker sums all its neigh-
bors’ oblivious counters except for that of the recipient.
In our algorithm, this summed oblivious counter is further
rerandomized to conceal from the receiver the fact that the
counter was not changed.

A malicious broker, however, might refrain from follow-
ing this protocol. The actions it can take can be divided into
three categories: using an arbitrary value instead of sum-
ming, summing the counter of a neighbor more than once
or not at all, or summing old messages rather than the lat-
est. The first attack does not endanger privacy: because the
broker does not have the encryption key, it can only set the
value to a random number, which might harm the validity
of the result but not the privacy of the resources.

To address the second form of attack, in which the broker
fails to count the messages of every neighbor exactly once
as the protocol dictates, each message sent from brokerv to
brokeru includes, in addition to the oblivious counter (the
subject of the message), a special field denotedshareuv

enc

containing an encrypted random integer chosen by the ac-
countant ofu on initialization. The values encrypted by the
group of shares assigned byu to its neighbors and itself
have the property of summing to 1 (modulo the size of the

Algorithm 1 Secure-Scalable-Majority- Algorithm for a
broker of resourceu
Input: A rational majority ratioλ = λn/λd and a candidate
rule r this voting instance represents.

Local variables: The setEu
t of edges colliding withu, the

privacy parameterk, and a givennum⊥u
enc containing an en-

cryption of 1.

On initialization or on update notification from the ac-
countant: Ask the accountant for the support ofr, and re-
ceive

〈
sum⊥u

enc, shareu⊥, Tenc, E (0) , . . . , E (0)
〉

enc
and〈

count⊥u
enc, shareu⊥, Tenc, E (0) , . . . , E (0)

〉
enc

as reply.

Definitions: Nu
t = {⊥} ∪ {v ∈ Vt : uv ∈ Eu

t },
∆u

enc =
∑̇

v∈Nu
t

(
λd∗̇sumvu

enc−̇λn∗̇countvu
enc

)
, ∆uv

enc =
λd∗̇

(
sumvu

enc+̇sumuv
enc

) −̇λn∗̇
(
countvu

enc+̇countuv
enc

)
.

Output(): Return the output of SFE with the controller
of u, where the condition to be evaluated (revealed to
the broker only) is:Cond (x1, x2, x3) =

(
x1 − klast

1 ≥ k
)

∧ (
x2 − klast

2 ≥ k
) ∧

(x3 ≥ 0), using
∑̇

v∈Nu
t
countvu

enc,∑̇
v∈Nu

t
numvu

enc, ∆u
enc, as the inputsx1, x2, x3 respec-

tively. klast
1 andklast

2 are maintained by the controller of
u, both initialized to zero, and set to the givenx1 andx2 re-
spectively at the end of the SFE.

Update(v): sumuv
enc ←

∑̇
w 6=v∈Nu

t

˜sumwu
enc, countuv

enc ←∑̇
w 6=v∈Nu

t

˜countwu
enc, numuv

enc ← ∑̇
w 6=v∈Nu

t
ñumwu

enc.
Send〈sumuw

enc, countuw
enc, numuw

enc〉 to v.

MajorityCond(v): Return the output of SFE with the
controller of u, where the condition to be evalu-
ated is: Cond (x1, x2, x3, x4) =

(
x1 − k̂last

1 < k
)

∨ (
x2 − k̂last

2 < k
) ∨

(x3 < 0
∧

x4 < 0)
∨

(x3 ≥ 0
∧

x4 > 0), using
∑̇

w∈Nu
t
countwu

enc,∑̇
w∈Nu

t
numwu

enc, ∆uv
enc, ∆uv

enc−̇∆u
enc as the inputsx1,

x2, x3, x4 respectively.̂klast
1 and k̂last

2 are maintained by
the controller ofu, both initialized to zero, and set to the
givenx1 andx2 respectively at the end of the SFE.

On initialization for each uv ∈ Eu
t , or on join of a neigh-

bor v: Setsumvu
enc, sumuv

enc, countvu
enc, countuv

enc, numvu
enc

andnumuv
enc to E (0).

On receiving 〈sum′, count′, num′〉 from v: Set
sumvu

enc ← sum′, countvu
enc ← count′, numvu

enc ← num′.

On change insum⊥u
enc from senc to s′enc: Setsum⊥u

enc to
senc+̇E (1), senc−̇E (1), s′enc+̇E (1), ands′enc−̇E (1) and
after each assignment callOnChange(). Finally, setsum⊥u

enc

to s′enc and callOnChange().

On a change insum⊥u
enc or count⊥u

enc or on a call to On-
Change(): For eachv ∈ Eu

t : if MajorityCond(v), call Up-
date(v).

field). This special field is implemented as part of the obliv-
ious counter using the vectorization technique described in
Section 4.2. Thus, it cannot be separated from the message
itself. That way, when calculating a new oblivious counter
by summing the counters received from the neighbors, this
field will contain an encryption of 1 if and only if every
neighbor was counted exactly once. This will be checked by
the controller, who can decrypt this field when the broker
uses this newly calculated counter as the input to an SFE.
Because the shares are encrypted, they cannot be forged by
the broker. The accountant is the one responsible for creat-
ing, encrypting, and distributing the shares to neighbors.

Nevertheless, a malicious broker can still breach the pro-
tocol by selectively reusing received counters instead of the
latest ones as the protocol dictates. In this case, the shares
sum to an encryption of 1, but this is obviously still a vio-
lation of the protocol. To address this attack, we further ex-
tend the oblivious counter to include, in addition to the pre-
viously described fields, a vector of timestamps.u assigns,
in preprocessing, an entry in this vector to each neighbor.
Whenv sends a message tou, it uses its controller to pro-
duce a timestamp vector which has the current time at the
designated entry and zero at the other. Whenu adds up its
neighbors’ contributions, the outcome is a vector containing
their timestamps. Using SFE, the controller can then calcu-
late the maximal timestamp and return its value plus one
as the current timestamp ofu. In addition, each controller
keeps a trace over the timestamps it receives from its bro-
ker as part of an SFE, and can thus detect violations.

Algorithms 1, 2, and 3 –Secure-Scalable-Majority– give
the privacy-preserving majority voting procedure we use,
for a broker, an accountant, and a controller respectively.
Algorithm 4 –Secure-Majority-Rule– is the main privacy-
preserving distributed mining algorithm of this paper.

5.3. Security analysis

The basic primitive for which combined statistics are
gathered in our algorithm is majority vote. A broker queries
its controller for the majority on two occasions: to decide
whether a message should be sent to a neighbor, and to find
out whether a local candidate rule is correct.

Assume that at timet1 the broker queries its controller,
and that this query is in the context of a rule for which votes
have been gathered from the group of resourcesVt1 and
the set of transactionsdbt1 . Assume that later, at timet2
(t2 > t1) the broker makes another query, this time about
the votes of resources inVt2 and set of transactionsdbt2 .

In our algorithm, the controller outputs the majority vote
only if the difference between two consecutive queries is of
at leastk transactions andk resources. Otherwise, the con-
troller provides an output which is independent of the data.
Furthermore, because in our algorithm votes are always ac-

Algorithm 2 Secure-Scalable-Majority- Algorithm for an
accountant of resourceu
Local data: DatabaseDBu

t , the encryption key, the setEu
t

of edges colliding withu, and a countert initialized to 1.

Encrypted messages structure:〈counter, share, T⊥,
Tv1 , Tv2 , . . . ,Tvd

〉enc - counter is the issue of the message,
share is the shares’ special field, andTv are the timestamps
of u and its neighbors respectively.

On initialization or on change in Nu
t : Create

and distribute random sharesshareuv
enc such that∑

v∈Nu
t

D (shareuv
enc) = 1.

On request from the broker for support count of candi-
date rule r = 〈X ⇒ Y, λ〉 or on a change in the database
affecting this count:

• Cyclically, read a few transactions from the database
DBu

t .

• For each transactionT which last read beforer
was generated: IfX ⊆ T , update r.countenc ←
r.countenc+̇E (1). If X ∪ Y ⊆ T , updater.sumenc ←
r.sumenc+̇E (1).

• Send(〈r.sumenc, shareu⊥, E (t) , E (0) , . . . , E (0)〉enc,
〈r.countenc, shareu⊥, E (t) , E (0) , . . . , E (0)〉enc)
back to the broker.

• Increaset.

Algorithm 3 Secure-Scalable-Majority- Algorithm for a
controller of resourceu
Local data: The decryption key and the setEu

t of edges
colliding with u.

On request from the broker for an SFE with
input 〈counter, share, T⊥, Tv1 , . . . , Tvd

〉enc, condition
cond for neighbor w:

• If D (share) 6= 1, broadcast that the broker ofu is ma-
licious and halt further execution.

• If D (Tv) < T̃v for somev ∈ Nu
t , broadcast that re-

sourcev is malicious and halt further execution.

• Run the requested SFE with the broker, and lety be the
final message to be sent to it.

• Send
(
y, 〈counter, share⊥u, Tv1 , . . . , Tvd

〉enc

)
to the

broker, whereTv = 0 for all v ∈ Nu
t , exceptTw =

E (1) +̇E
(
maxv∈Nu

t
D (Tv)

)
.

• SetT̃v ← D (Tv) for eachv ∈ Nu
t .

cumulated, we have thatVt1 ⊆ Vt2 anddbt1 ⊆ dbt2 ; thus,⋃i−1
j=0 Vtj ⊆ Vti and

⋃i−1
j=0 dbtj ⊆ dbti . Consequently, for

anyG ⊆ {Vt1 , . . . , Vti−1}, either|Vti4 (
⋃

G)| ≥ k or the
controller does not provide the majority vote.

This means the controller provides outputs to exactly

Algorithm 4 Secure-Majority-Rule- Algorithm for a bro-
ker of resourceu
Inputs of resourceu: The setEu

t of edges colliding with
u, the set of itemsI, the frequency thresholdMinFreq, and
the confidence thresholdMinConf.

Output of resourceu: The interim set of rules̃Ru [DBt].
Local variables: 〈X ⇒ Y, λ〉 denotes a candidate-rule
X ⇒ Y with desired majority thresholdλ. C is a set
of candidate rules together with countersr.sumenc and
r.countenc, both initially set toE (0).
Initialization: SetC ← {〈∅ ⇒ {i} , MinFreq〉 |i ∈ I}.
Repeat the following continuously:

• For each ruler ∈ C for which there is no active
Secure-Scalable-Majorityinstance, initiate one using
〈r.sumenc, r.countenc, r.λ〉 as the input.

• For each ruler ∈ C, ask the accountant for an updated
support count forr.

• Once every few cycles:

– Set R̃u [DBt] to the set of rulesr ∈ C which
their correspondingSecure-Scalable-Majorityin-
stance outputstrue.

– For eachr = 〈∅ ⇒ X, MinFreq〉 ∈ R̃u [DBt], i ∈
X: if r′ = 〈X \ {i} ⇒ {i} , MinConf〉 6∈ C, addr′

to C.

– For each r1 = 〈X ⇒ Y ∪ {i1} , λ〉 , r2 =
〈X ⇒ Y ∪ {i2} , λ〉 ∈ R̃u [DBt], i1 < i2: if
r′ = 〈X ⇒ Y ∪ {i1, i2} , λ〉 6∈ C and ∀i3∈Y

〈X ⇒ Y ∪ {i1, i2} \ {i3} , λ〉 ∈ R̃u [DBt], addr′

to C.

On receiving a Secure-Scalable-Majoritymessage rele-
vant to rule r = 〈X ⇒ Y, λ〉, from a neighbor v: If
r 6∈ C, add it toC. If r′ = 〈∅ ⇒ X ∪ Y, λ〉 6∈ C, add
r′ to C as well. In any case, forward the message to the ap-
propriate localSecure-Scalable-Majorityinstance.

those queries that ak-TTP would have provided (accord-
ing to Definition 3.1) the outputs. The broker-controller in-
teractions in our algorithm can thus be simulated in the
ideal model when ak-TTP is used instead of the controller.
This means thatk-security is retained both with respect
to resources (k-resources-security) and to transactions (k-
transactions-security). Thus, the algorithm isk-secure.

6. Experimental Results

The important characteristics ofSecure-Majority-Rule
are its convergence rate and its infinite scalability. To eval-
uate these as well as other characteristics, we implemented
a simulator capable of running thousands of simulated re-
sources, connected via links with different propagation de-

0
10
20
30
40
50
60
70
80
90

100

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 r
ec

al
l (

%
)

Time (number of steps)

(a) Recall

T5I2
T10I4
T20I6

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Time (number of steps)

(b) Precision

T5I2
T10I4
T20I6

Figure 2. Recall and precision of Secure-Majority-Rule . In all three databases, by the time each resource has

scanned its part of the database almost three times, the average recall and precision have already reached 90%, an almost-

complete level of confidence. This is in comparison to two scans in [15], and just a single scan in [20], and is due to the

intra-resource communication required.

lays as in the real world. Network topology was gener-
ated using the BRITE [5] topology generator (based on
the Barab́asi-Albert model [4]). Synthetic databases were
produced using the standard association patterns generation
tool from the IBM Quest group [16]. As is usually the case
when profiling data mining algorithms, we generated three
databases: T5I2, T10I4, and T20I6, where the number after
the T denotes the average transaction length and the num-
ber after the I stands for the average pattern length. Each of
the three databases contains a million transactions. Using
standard, pair-wise independent hashing techniques, trans-
actions were sampled from the database to simulate the lo-
cal database of each resource. This technique allowed us to
overcome memory limitations and thus to simulate a larger
number of resources. In all experiments, unless explicitly
defined otherwise, the number of resources was 2,000, the
size of each local database was 10,000 transactions, and the
privacy argumentk was 10. In all experiments each resource
processed 100 transactions at each step, and on every fifth
step communicated with its controller to create new candi-
date rules. Thus, the local database is scanned once every
100 steps. We simulate dynamic databases by incrementing
every resource with twenty additional transactions at each
step.

6.1. Convergence Rate

The quality of an interim solution is measured by itsre-
call andprecision. The recall and precision ofu at time t

are
|R̃u[DBt]∩R[DBt]|

|R[DBt]| and
|R̃u[DBt]∩R[DBt]|

|R̃u[DBt]| , the percent-

age of correct rules uncovered and the percentage of correct

rules in the resource’s interim solution respectively. Dur-
ing static periods, in which the database and the system do
not change, recall and precision converge to one. To ana-
lyze the performance ofSecure-Majority-Rule, we describe
the convergence rate of recall and precision (see Figure 2).

6.2. Scalability

In order to demonstrate that the good convergence rate of
Secure-Majority-Ruleis not affected by the number of par-
ticipants, we measured the time it takes to reach a global re-
call of 90% for different numbers of resources (see Figure
3). To simulate a large number of resources, these experi-
ments were conducted for the special case of a single item-
set. This change does not affect the overall result, because
in our algorithm the votes of all candidates take place con-
currently.

6.3. The Effect of the Privacy Parameter

The privacy parameterk specifies the least size of a
group for which our algorithm allows learning combined
statistics. Thus, the higher its value, the greater the secu-
rity. However, increasingk trades off with performance. In
this experiment we again measured the time it takes to reach
a global recall of 90% for different values ofk (see Figure
4). The experiment shows that the dependency of our algo-
rithm onk is logarithmic and thus practical.

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 5 10 15 20 25 30

N
um

be
r

of
 s

te
ps

 u
nt

il
90

%
 r

ec
al

l

Number of resources (x 10,000)

Rule significance: +0.005
Rule significance: +0.007
Rule significance: +0.020
Rule significance: +0.040
Rule significance: -0.060

Figure 3. Scalability of Secure-Majority-Rule .
Significance of a rule is defined as:

∑
v∈Vt

sumv

λ·∑v∈Vt
countv − 1

(the percentage of transactions for which the rule is cor-

rect divided by the majority threshold, minus one). It is

notable that for any significance level, there is some con-

stant amount of resources for which the number of re-

quired steps does not increase even if more resources

are added. The closer the significance is to zero (the per-

centage of transactions for which the rule is correct is

closer to the threshold), the more steps are required (be-

cause a larger portion of the global database should be

collected for deciding whether the rule is globally cor-

rect). These results are typical for local algorithms.

References

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining associa-
tion rules between sets of items in large databases,” inProc.
of ACM SIGMOD’93, Washington, D.C., 1993, pp. 207–216.

[2] R. Agrawal and J. Shafer, “Parallel mining of association
rules,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 8(6), pp. 962–969, 1996.

[3] R. Agrawal and R. Srikant, “Privacy-preserving data min-
ing,” in Proc. of ACM SIGMOD’00, Dallas, Texas, USA,
May 14-19 2000, pp. 439–450.

[4] A. Barab́asi and R. Albert, “Emergence of scaling in random
networks,”Science, vol. 286, pp. 509–512, October 1999.

[5] “BRITE: Boston university Representative Internet Topol-
ogy gEnerator,” http://www.cs.bu.edu/brite/.

[6] D. Cheung, J. Han, V. Ng, A. Fu, and W. Fu, “A fast dis-
tributed algorithm for mining association rules,” inProc. of
PDIS’96, Florida, December 1996.

[7] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Pri-
vacy preserving mining of association rules,” inProc. of
ACM SIGKDD’02, Canada, July 23-26 2002, pp. 217–228.

[8] O. Goldreich, “Secure multi-party computation,” 2002, http:
//www.wisdom.weizmann.ac.il/∼oded/PS/prot.ps.

270

280

290

300

310

320

330

340

350

360

370

0 5 10 15 20 25 30 35 40 45 50T
im

e
(n

um
be

r
of

 s
te

ps
)

un
til

 9
0%

 r
ec

al
l

k

T5I2
T10I4
T20I6

Figure 4. The effect of the privacy parameter
on the performance of Secure-Majority-Rule .
The tradeoff between security and performance is log-

arithmic and thus practical. This experiment was con-

ducted using the T10I4 database.

[9] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game - a completeness theorem for protocols with
honest majority,” inProc. of STOC‘87, 1987, pp. 218–229.

[10] S. Goldwasser and S. Micali, “Probabilistic encryption,”
Journal of Computer and System Sciences, vol. 28, 1984.

[11] M. Kantarcioglu and C. Clifton, “Privacy-preserving dis-
tributed mining of association rules on horizontally parti-
tioned data,” inProc. of DMKD’02, June 2002.

[12] H. Kikuchi, “Oblivious counter and majority protocol,” in
Proc. of ISC 2002, Brazil, October 2002.

[13] Y. Lindell and B. Pinkas, “Privacy preserving data mining,”
Proc. of Crypto’00, LNCS, vol. 1880, August 2000.

[14] P. Paillier, “Public key cryptosystems based on composite de-
gree residuosity classes,” inProceedings of Eurocrypt ’99.
Springer-Verlag, 1999, pp. 223–238.

[15] A. Schuster, R. Wolff, and B. Gilburd, “Privacy-preserving
association rule mining in large-scale distributed systems,”
in Proc. of CCGrid’04. Chicago, Illinois, USA: IEEE, April
2004.

[16] R. Srikant, “Synthetic data generation code for association
and sequential patterns,” Available from the I.B.M. Quest
Web site at http://www.almaden.ibm.com/cs/quest/.

[17] R. Srikant and R. Agrawal, “Fast algorithms for mining asso-
ciation rules,” inProc. of VLDB’94, Santiago, Chile, Septem-
ber 1994, pp. 487–499.

[18] L. Sweeney, “k-anonymity: A model for protecting privacy,”
Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, vol. 10, no. 5, pp. 557–570, 2002.

[19] J. Vaidya and C. Clifton, “Privacy preserving association
rule mining in vertically partitioned data,” inProc. of ACM
SIGKDD‘02, Edmonton, Alberta, Canada, July 2002.

[20] R. Wolff and A. Schuster, “Association rule mining in peer-
to-peer systems,” inProc. ICDM‘03, November 2003.

