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Abstract these cumulative statistics, provided that they cannot be ma-
nipulated to obtain information about a specific record or a
Data privacy is a major threat to the widespread deploy- specific data source. Trusted third parties are, however, dif-
ment of data grids in domains such as health care and fi- ficult to find, and the procedure involved is necessarily com-
nance. We propose a novel technique for obtaining knowl- plicated and inefficient.
edge — by way of a data mining model — from a data grid,  This scenario is most evident in the health maintenance
while ensuring that the privacy is cryptographically secure. pysiness. Health Maintenance Organizations (HMOs) have
To the best of our knowledge, all previous approaches for 3 high interest in sharing medical data, both for public
solving this problem fail in the presence of malicious par- health reasons, such as plague control and the evaluation
ticipants. of different medical protocols, and for commercial reasons,
In this paper we present an algorithm which, in addi- such as detecting medical fraud patterns or medical miscon-
tion to being secure against malicious members, is asyn-quct. Similar examples can be found in the financial domain
chronous, involves no global communication patterns, and where, for instance, account information should be shared
dynamically adjusts to new data or newly added resources.in order to detect money laundering. However, sharing data
As far as we know, this is the first privacy-preserving data js very problematic: it is legally forbidden to expose specific
mining algorithm to possess these features in the presencgecords — i.e., a patient's medical record — and it is commer-
of malicious participants. Simulations of thousands of re- cjally undesirable to expose statistics about a single HMO
sources prove that our algorithm quickly converges to the _ e g. mortality rates or the average expenditure per client.
correct result. The simulations also prove that the effect of  pistributed data mining allows data to be shared without
th_e privacy parameter on the convergence time is logarith- compromising privacy. On the one hand, data mining tech-
mic. niques have been shown to be a leading tool for data analy-
sis, and as such they are likely to satisfy researchers’ needs
as an interface to the data stored in a grid. On the other
1. Introduction hand, the models produced by data mining tools are statis-
tical and thus satisfy the privacy concerns of the data own-
The objective of a data grid is to maximize the availabil- €rs. As a result, different HMOs can choose to reveal their
ity and utilization of data that was often obtained through databases not for direct reading but rather to a distributed
the investment of much labor and federal capital. Maximal data mining algorithm that will execute at the different sites
utilization would be achieved if the owners of different data and produce a statistical model of the combined database.
(resources) were able to share it with each other and with theThat the algorithm produces statistics still does not guaran-
research community at large —i.e., make it available for ev- tee privacy: an HMO also has to make certain that the data
eryone. Nevertheless, this is frequently prohibited by legal mining algorithm itself does not leak information. For in-
obligations or commercial concerns. Such restrictions usu-stance, an algorithm in which each HMO computes its mor-
ally do not apply to cumulative statistics of the data. Thus, tality rate and then sends it to a polling station which com-
the data owners usually do not object to having a trustedputes the global statistics would not meet this criterion be-
third party (such as a federal agency) collect and publishcause the polling station would be informed of the mortal-
ity rate for each HMO. This calls for a specific type of dis-
% We thank Intel Corporation and the Mafat Institute for Research and tributed data mining algorithm that givacy-preserving
Development for their generous support of this research. Privacy-preserving data mining was first introduced in




2000 [3]: the idea there is to perturb the data by adding ran-ciding which of them will participate in the protocol, thus
dom transactions to the database. These perturbations hideontrolling their cumulative database. Preserving privacy in
the original data, but average out in the statistics. the presence of such attacks requires additional measures
An alternative approach [11, 19, 13] to privacy- Which are outside the scope of this paper.
preserving data mining is to replace each message ex- The main contribution of this paper is in employikg
change in an ordinary distributed data mining algorithm privacy for presenting a cryptographic privacy-preserving
with a cryptographic primitive that provides the same in- association rule mining algorithm that is secure against ma-
formation without disclosing the data of the participants: licious participants, and in which the cryptographic primi-
for example, replacing a sum reduction with a cryptograph- tives involve only pairs of participants and are thus scalable.
ically secure primitive in which the participants learn only We use a non-private association rule mining algorithm as
the total sum and not each other’s partial sums. a foundation. We embody the requirement for an incorrupt-
When dealing with very large systems, it is often rea- ible database by depositing the database with an honest en-
sonable to permit learning partial sums, provided they in- tity we call theaccountantAn accountant receives queries
clude a minimal number of participants’ inputs. We formal- to the database and returns the correct answer. The accoun-
ize this, definingc-privacyas the privacy attained when no tant encrypts the answer with an encryption key shared by
participant learns statistics of a group of less thapartici- the accountants, thus ensuring that the answer will not be
pants k-privacy is a powerful, yet natural generalization of manipulated. The data mining protocol is then continued by
the trusted third party model. It captures practical privacy abroker, which manages the mined model, issues queries to
measures which are accepted by HMOs today [18]. Usingthe accountant, and communicates with other brokers. The
k-privacy, we can implement efficient cryptographically se- Proker is assisted in its operation by a third entity;oa-
cure primitives that do not require all-to-all communication, troller, which has the decryption key and can thus tell the
and are thus practical for large-scale distributed systems. broker when a message should be sent or the mined model
When practiced well, the cryptographic approach guar- be further de_veloped. Both broker and contro!lgr can be cor-
antees the privacy of both individual records and source 'UPted, and if they are, they may behave maliciously.
statistics. However, all of the algorithms which have taken ~ Since our basic (non-privacy-preserving) algorithm is
this approach so far have assumed that all participants aréXremely scalable in itself, and since we do not add any
honest-but-curious: they may observe the protocol and maydlobal operators to it, the algorithm presented here can be
try to glean additional knowledge from it (e.g., the data of Shown to scale to millions of resources —well above the cur-

a specific patient or the statistics of a specific HMO), but rént requirements of grid systems. Furthermore, the algo-
would otherwise follow the protocol exactly. rithm responds very efficiently to changes in the databases,

the honesty assumption cannot be Consid_especially if the changes are minute and do not affect the al-

ered practical in data grid settings, where different resourcesgor'thm,S outcpme. i , )

are maintained by different administrative authorities. The A key quality of our algorithm is that it offers a trade-

lesson learned from innumerable attacks on distributed sys°ff between the privacy attainable (measured in the mini-
tems is that their maintenance level is never uniform nor suf- Mal Size of the population on which the statistics are evalu-
ficient. Thus, it should be assumed that attackers will take t€d) and the computational effort required to attain it. Still,

advantage of flaws in the software of some of the resourcesEVeN when the maximal security level is required, the al-
in order to take them over. gorithm maintains some of its qualities (such as the effi-

In this paper we address the problem of preserving pri- cient response to changes in the data). Finally, the algorithm

. L . . does not, as our analysis reveals, disclose any information
vacy while distributively mining association rules from a y Y

large number of database partitions connected over a dat%?eesr tg\?gnt?: t“hsé Ofrgsg:fgto':msﬁzj;d ;r:gcli'sgﬁzscol\rﬂr;ﬁf
grid system, in the possible presence of malicious partic- ' P P P .

ipants. We make, however, two assumptions: that the at_c:ious participants can, at most, harm the validity of the re-
tacker cannot manipulate the database of a resource, and™

that the attacked resources do not collude. The first assump-

tion is justified because the database of an organization is2. Related Work

usually very well protected. Moreover, once the attacker

gains access to the database records, privacy has already The association rule mining (ARM) problem was first
been breached. If our first assumption does not hold, a ma-described about a decade ago [1], and was formulated in a
licious database can be created to make the mining outputistributed setting soon after [2, 6]. However, scalability for
expose rules it would not expose otherwise, thus allowing aseveral dozens of computing nodes was considered satis-
variety of attacks. As for the second assumption, a group offactory until recently. The first algorithm for the large-scale
colluding participants can invoke a similar scenario by de- distributed ARM problem was presented in [20].

Unfortunately,



Privacy-preserving data mining has received a lot of at-

tention in the past few years. Perturbation-based techniques
have been widely discussed (see [3, 7]). However, because
they disclose data source statistics, they are not fit for a dis-

tributed setting.

Cryptographically secure versions were developed for
three data mining algorithms: distributed ARM (the same
problem we discuss) [11], ARM in vertically partitioned
data [19] —i.e., where each transaction is split among sev-

eral nodes, and decision tree induction [13]. These are not

scalable because, in contrast to therivacy model pre-
sented here, the cryptographic primitives they use are global
and rigid. That is, the evaluation of every primitive requires
the participation of all nodes, and if the data at even one
node changes the process has to be repeated from scratch
The first scalable algorithm for the privacy-preserving
distributed ARM problem was presented in [15]. Neverthe-
less, the algorithm is not secure against malicious partici-
pants. The same also holds for all previous work in privacy-

preserving data mining; they all assume semi-honest attack-

ers (those that must follow the protocol). Some authors re-
fer to the work of Goldreich, Micali and Wigderson [9] — a
method by which any private algorithm can be turned into

e Local Variables.For each participant: z*, initialized
to L, is the last input thé-TTP received from. G;,
initialized to {¢}, is the set of the groups of partici-
pants about whom outputs were provided.to

Input. At any given time, the k-TTP may receive the
current inputz? from participanti. The k-TTP then
setsz’ « .

Output. At any given time, participant: may request
the k-TTP for an output for a group of participants
V. The k-TTP then checks if the following condition

| holds:

VGC G |val G| =k

jeG

(A denotes the symmetric difference of sets.)

If the condition does not hold, theTTP ignores the
request. Otherwise, theTTP setsG; — G; U {V},
and sends back tothe valuef (zf, ...,z ) such that
x} equalsz; if i € V and_L otherwise. That is, th&-
TTP returns the output of computing the function over
the latest inputs of the participants I only.

one that assumes malicious participants — as a basis for ex-

panding their work to the malicious model. However, in
[9], at the first stagedommitmern)t each participant must

send a private share of its input to all other participants.
In distributed data mining, that input is the local database.

Since each share must include as much information as the

database will provide for producing the mined model, the
method in [9] is not suitable for such scales of data as thos
found in the data grid.

3. Problem Definition

k-privacy and k-security. Consider a set of participants,
each owning a private input;, who wish to jointly com-
pute the output of some common function of their inputs,
without revealing anything but the output. They do so by
running a protocol. The participants are said to follow the
honest-but-curiougalso known asemi-honesbr passive
model [8] if they are assumed to follow the protocol exactly
but may observe it in order to try to glean additional knowl-
edge. Otherwise, the participants are said to followrtize
licious model [8].

k-privacy (k-security is the privacy attained when no
participant learns combined statistics of a group of less than
k participants, in the presence of honest-but-curious (mali-
cious) participants. A rigorous definitions follow.

Definition 3.1 (k-TTP) LetP = {P,...,P,} be the set
of honest-but-curious (malicious) participants. FATTP
that privately (securely) computes a functigrwith n in-
puts is an honest, event-based entity, such that:

e

Definition 3.2 (k-privacy and k-security) A protocol is
said to bek-private (k-secure)if it can be simulated by an-
other protocol in which each participant is allowed to
communicate only with &-TTP.

Data Grid Model. A data grid is composed of a group

of resources, each maintaining a database partition. Each re-
source is composed of three entities (see Figure 1pte

ker — through which the resource communicates with the
rest of the data grid, theontroller, which tells the broker
when to send messages and when to further develop the
mined model, and thaccountantwhere the local database

is deposited. We denofe, the set of resources at time
Communication between the resources takes place through
the exchange of messages via an overlay network. We as-
sume that an underlying mechanism maintains a communi-
cation tree that spans all the resources. We deAijt¢he

set of edges colliding with a resourget timet.

Association Rule Mining Model. The association rule
mining (ARM) problem is traditionally defined as follows:
Let] = {iy,12, ..., i,n  be the items in a certain domain. An
itemset is some subsat C [. A transactiort is also a sub-
set of I, associated with a unique transaction identifier. A
databasé® B is a list that containgD B| transactions. Given
an itemsetX and a databasP B, Support (X, DB) is the
number of transactions il B which contain all the items
of X and Frreq (X, DB) = S27CiLB) For some fre-
quency thresholdinFreq € [0, 1], we say that an item-
set X is frequentin a databasé B if Freq(X,DB) >
MinFregandinfrequentotherwise. For two distinct frequent



be k-resources-securi it is k-secure when the resources
(clinics of the HMOs, for example) are considered as the
participants in the-TTP definition. The algorithm is said
to bek-transactions-securi it is k-secure when the trans-

B+ -8 actions (patients records, for example) are considered the
Controller Accountant

participants. For simplicity, in this paper we seand to
be equal and define an algorithm lasecureif it is both
k-resources-secu@ndk-transactions-secure

4. Prerequisites

The work presented here relies on two bodies of re-
Figure 1. Each resource is composed of the search: a scalable algorithm for association rule mining
accountant, the broker, and the controller. which does not require global communication and a cryp-
tographic technique called oblivious counters. A brief de-
scription of these methods follows.

itemsetsX andY’, and a confidence threshaldinConf € o o .
0,1], we say the ruleX = Y is confidentin DB if 4.1. A Scalable Distributed Association Rule Min-

MinConf- Freq (X, DB) < Freq(X UY,DB). We call ing Algorithm — Majority-Rule
confident rules between frequent itemsetsrect The so- ) S
lution of the ARM problem isk [D B] — all the correct rules In a previous paper [20] we descrifiajority-Rule —

a highly scalable distributed ARM algorithm (non-privacy-
preserving). The algorithm is based on two main inferences:
That the distributed ARM problem is reducible to a se-
guence of majority votes, and that if the vote is not tied, ma-
jority voting can be done by a scalable algorithm — which
we also present in that paper. Since it turns out that the fre-

uency of an overwhelming number of candidate itemsets
is significantly different fromMinFreq (i.e., the vote is not
tied), the outcome of these two observations is a local, and
éhus highly scalable, distributed ARM algorithm.

The input to theScalable-Majorityalgorithm is a bit

at each nodex and a globally known majority thresh-
old A\. Nodes communicate by sending pajssc) to each
other, and keep records of the last message sent to each
neighborv — (sum™, count*’) — and the last received —
(sum®, count®™). It is natural to represent the input bit
as a message froth. We thus denotéV* asE}* U { Lu}.

in the given database.

Database Model.We assume the database is updated
over time (for instance, in the HMO application, patient
records are accumulated), and henbd3; will denote the
database at time and R [DB;] the rules that are correct
in that database. In distributed association rule mining the
database is partitioned among the resources. We denot
the union of partitions belonging to a group of resources
V C V, by DBY; that is, DB, equalsDB;*. When the
number of resources is large and the frequency of update
high, it may not be feasible to propagate the changes to
the entire system at the rate they occur. Thus, it is benefi-
cial to have an incremental algorithm that can quickly com-
pute interim results and improve them as more data is prop-
agated. Such algorithms are callaytime algorithmsWe
denoteR,, D B;] the interim solution known to the resource
u at timet. We further assume that no transactions will be by . . o
deleted. This assumption can be made without loss of gen-1 NUS: sum eq“a'ifj”e if the input bit is set and zero
erality, because deleting a transaction can be simulated b)ptherwilje, and:o%t eqffls one. Theu?ode will com-
adding a ‘negating’ transaction instead (as is customary inPUBA™ = (sum™ + sum®*) — A (count™” — count”)
logging). and A* = Z (sum”™ — Acount”™). u will send a

Attack Model. We assume the following attack model: vueNg' . .
at any given point in time, an attacker selects an accountantmessagﬁ o upowalrst cuontact VX:,th ; andu|vn theucase
a broker, or a controller and assumes control over it. Attack- that (A. 2 0AA™ > A¥) \/..(A <OAA™ <A .)’
ers assuming control over accountants can monitor incom-angx/ﬂ rfe\éall:]ate the (;]ondltlon on e\./ﬁry Ch?nr?eﬁm f
ing messages and internal states but have to provide the corz-ihn - In bot CQSGZF N meﬁsage_W;]bqua the sum o
rect output for every query; attackers that take control overt e messages received from other neighbors:
controllers or brokers can do whatever they please. They
can resend or alter message contents, or refrain from send- < Z sum™*, Z Countw“> :
ing them altogether. However, we assume each attacker is wuFvuEN wuFvuEN!
selfish and will not cooperate with others. Having receiveds, ¢) from v, u will set sum* to s and

Privacy Model. A distributed ARM algorithm is said to  count”™ to c. It is easy to see that wh&talable-Majority



terminates (i.e., no more messages are to be sent) all nodes In this work we use an additively homomorphic prob-
compute the same sign fo*; that is, they agree on the ma- abilistic public-key cryptosystem, which has the addi-

jority. tional property thatA* and A~ do not require knowledge
To see howScalable-Majoritytranslates into an associ- of the encryption key. Such a cryptosystem can be eas-
ation rule mining algorithnMajority-Rulg consider a ma- ily constructed from any two homomorphic cryptosystems:

jority vote in which the transactions vote over every candi- messages are first encrypted using the first cryptosys-
date itemset, with each transaction voting one if it contains tem, then their encryption is signed using the seéond
the itemset and zero otherwise, and witset toMinFreq, We use such a cryptosystem for implementioglivi-

A positive majority would mean that the itemset is frequent. ous counterdy which one can add two ciphers without
Similarly, to decide whether a rule is confident, the transac- knowing their plain, and without knowing either the en-
tions again must vote. This time only transactions that in- cryption or decryption keys. Furthermore, by usiAg it-
clude the left-hand side of the rule vote, and their vote is eratively, one can easily calculaé (m - x) from E (z)
one if they contain the right-hand side and zero otherwise;for somem € N. In the interest of clarity, we mark
Ais set this time toinConf. Naturally, with databases con-  E (z) +E (y) for A (E (z),E (y)), E(z) —E (y) for
taining many transactionsym" andcount" are setac- A~ (E (z),E (y)), m+E (z) for E (m - z), and>.E (z;)
cording to the agglomerated vote. for At (.L.AT (AT (E (z1), E (22)), E (z3)) ...).

Itis left to show how candidates are generated. Note that We employ two standard extensions to the cryptosys-
in Majority-Rulecandidates must be rules. This is because tem. The first is to use standard shifting techniques in or-
Majority-Ruleis an anytime algorithm, and as such, it can- der to support the encryption of negative integers. The sec-
not wait for termination before it produces rules. Here a ond is to extend the encryption and decryption functions to
generalization of Apriori's [17] criterion is used: Each re- work over a tuple of integers while keeping the homomor-

sourceu generates initial candidate rules of the fofim=- phic property for each single element. That is:

{i} for eachi € I. Then, each time it updates the candidate

rule set, it generates, for each rllle> X € R, [DB,], new D (A+ (E ((z1, 22, -, 2p)) , E((y1, 92, - - - m%)))) =
candidate rules( \ {i} = {i} for alli € X. Additionally, (T1+y1, 22+ Y2, T +Yp).-

the resource will look for pgirs of ruI.es iR, [DBt.] which _This can be implemented, for example, by en-
have the same left-hand side and right-hand sides that d'f'coding (@1,.7y) € Ty, X --- X Zy, as
fer only in the Iastitemé(:Yu{il}andX:>Yu{z'2}. 2Ny + 582’]\}2" Jf _ 'Ip—lj\}p—l + before en-
For everyi; € Y, the resource will verify that the rule ., ii0 and using modulo calculations for decoding after
X = Y U {i1,i2} \ {is} is also correct, and then gener- decryption

ate the candidaté&’ = Y U {iy,i2}. It can be shown that '

the minimal set of candidate rules is created wRgn D B;] s _— .
is 100% precise [20]. 5. {c-secure Distributed Association Rule Min-

ing

We now describ&ecure-Majority-Rulea k-secure dis-
tributed association rule mining algorithm. The master plan
of Secure-Majority-Rulés similar to that oMajority-Rule
the resources perform majority votes over candidate rules
to decide whether they are frequent and confident. How-
ever, inSecure-Majority-Ruléhe candidates are counted in
the local database by the accountant, which then encrypts
the count into oblivious counters using an encryption key
known only to accountants. The broker knows neither the
decryption nor the encryption keys. This ensures that a bro-

4.2. Oblivious Counters

We denote a public-key cryptosystem frofhy by
(E,D): E(m) is the encryption of a given plain text
m € Z, using the encryption key, anf(c) is the de-
cryption of a given cipher text using the corresponding
decryption key(E, D) is calledprobabilistic[10] if the en-
cryption process involves a random element, such that two
ciphers encryptiﬁg\/the same plain are seemingly nonre-

lated. We denoté&’ (x) — the rerandomization of (z) — a

different cipher such thab (E (x)) =D (E (x)). ker cannot discover the data in messages it receives from
A public-key cryptosysteniE, D, A™, A~) is calledad- its neighbors, nor can it forge encrypted counts. Only con-
ditively homomorphidf there exist efficient algorithms trollers can decrypt the oblivious counters. However, a con-
andA~ that allow the encryption of +y or z — 1y to be effi- troller will never be given the oblivious counter directly. In-
ciently calculated, givel’ () andFE (y), without knowing stead, whenever a broker has to decide whether to send a
the decryption key. That is, for alf (z), E(y): message to its neighbor, it performs a secure protocol with
D (AT (E(x),E(y))) == +y, 1 We base our simulations on the popular Paillier [14] probabilistic ad-

D (A, (E (T) E (y))) —z—y. ditively homomorphic cryptosystem.



a controller, by the end of which the broker learns whether A broker will use such an SFE primitive on two occa-
the message should be sent and the controller learns nothsions. The first is when a brokerin Majority-Ruleevalu-
ing. Also, whenever new candidates should be generatedates theMajority-Rulecondition onA* and A** to decide
the broker performs a similar protocol with a controller, by whether a message should be sent to a neighbbr this
the end of which the broker learns the new candidate setcase the broker will initiate SFE with the controller, where
and nothing more and the controller learns nothing. Finally, the condition to be evaluatedrife means that a message
to prevent malicious brokers from forging messages, an ac-should be sent) is: For the candidate rule considered, either
counting field is included in every message. To prevent re-the Majority-Rulecondition overAY, . andAY"  evaluates
transmission of old messages, timestamps are used. true, or the difference between the current and previous val-
We begin by addressing the problem of maintainiag  ues encrypted bEveNucountgﬁc is less thank (mean-
privacy. k specifies the least size of a group for which our ing there are less thai new transactions than in the last
algorithm allows learning combined statistics (majority vote query), or the difference between the current and last val-
of the participants in this group). We achieve this by mak- ues encrypted b{: eNunumem is less thark (meaning
ing sure that as long as data gathered for a rule is not basedt counts less thak new database partitions than in the last
on at leask additional database portions and at Idaatidi- query).
tional transactions than in the last query, the resource behav- The second occasion is whenneeds to generate new
ior is independent of the data and therefore does not discloseandidates. In this case it will initiate SFE with the con-
anything about it. Then we proceed to address the problemroller in order to discover, for each candidate whose oblivi-
of malicious participants. ous counters have changed, whether the rule is correct. The
condition to be evaluated in that case is that the value en-
crypted byAY,  is atleast zero, and the differences between

the current and last values encrypted ¥y, Ny count™”

Consider a system composed of brokers running and ZveNunum“” are at leastt. It will then generate
Majority-Rule with all votes, and consequently all mes- new candidates according to the criterion defined in the
sages, encrypted by the accountant in oblivious counters Majority-Rulealgorithm.

Instead of maintainingum™’, count™, sum", count®",

A", and A", a broker will maintain their encrypted ver- 52  Binding malicious participants to the protocol

5.1. Maintaining k-privacy

sions: sum®’ ., count® ., sumgt., count®., A¥ ., and

AYY.. count counts transactions. But, in order to main- Messages exchanged between brokers consist of obliv-
tain k-resources security, we also need to count resourcesious counters. When sending a message to a neighbor,
For this purpose we add a resource countern, and like-  Majority-Rule dictates that the broker sums all its neigh-

wise maintainrum® andnum®*. When the broker needs  bors’ oblivious counters except for that of the recipient.
to send a neighbor a message that sums the votes proim our algorithm, this summed oblivious counter is further
vided by the rest of its neighbors, it will use the" algo- rerandomized to conceal from the receiver the fact that the
rithm to sum the counters. counter was not changed.

A problem arises when a broker needs to evaluate a A malicious broker, however, might refrain from follow-
counter; for example, when it needs to learn whether theing this protocol. The actions it can take can be divided into
value it hides is greater than zero (that is, the value’s sign).three categories: using an arbitrary value instead of sum-
For this, it must consult with the controller. Nevertheless, it ming, summing the counter of a neighbor more than once
is essential that the controller not learn the value ofhis or not at all, or summing old messages rather than the lat-
is a standard secure function evaluation (SFE) problem [9] est. The first attack does not endanger privacy: because the
between two participants where the input of the broker is broker does not have the encryption key, it can only set the
the encrypted oblivious counter, the input of the controller value to a random number, which might harm the validity
is the decryption key, and the function, whose output should of the result but not the privacy of the resources.
be revealed to the broker only, is the sign of the value en-  To address the second form of attack, in which the broker
crypted by the counter. In [9], and in many later papers, gen-fails to count the messages of every neighbor exactly once
eral techniques for such evaluations are given. For our spe-as the protocol dictates, each message sent from boaker
cific problem, evaluating the sign of an encrypted counter, brokerw includes, in addition to the oblivious counter (the
several ad hoc solutions can be employed with higher per-subject of the message), a special field denatad-el’,
formance. One example is to use the oblivious counterscontaining an encrypted random integer chosen by the ac-
based on [12], which then allow evaluating the sign of an countant ofu on initialization. The values encrypted by the
encrypted counter based on its most significant encryptedgroup of shares assigned hyto its neighbors and itself
bit only. have the property of summing to 1 (modulo the size of the



Algorithm 1 Secure-Scalable-Majority Algorithm for a
broker of resource

Input: A rational majority ratioh = \,,/\; and a candidate
rule r this voting instance represents.

Local variables: The setE}* of edges colliding withu, the
privacy parametek, and a givemumZ % containing an en-
cryption of 1.

On initialization or on update notification from the ac-
countant: Ask the accountant for the supportxfand re-
ceive <sumL” sharey ), Tene, E(0),..., E (0)>em and

(countF™, share, s, Tene, E(0),...,E (O)>mC as reply.

Definitions: IV} {1} U {veV,:uveE}}
A“ A'U/U

enc enc

vu vu

= D eny (Aaksumyt .~y kcount?t.),

: VU | ar uv ) : . VU | uv
Ad* (sumenchsumenc) —Ap* (counteercountenc).

Output(): Return the output of SFE with the controller
of u, where the condition to be evaluated (revealed to
the broker only) isCond (z1,x2,x3) = (1’1 — Klast > k)

A (z2 — k5" > k) A\ (z3 > 0), using > venuCounte,
ZUGN#num’ggc, AY ., as the inputsey, xs, x3 respec-
tively. k{25t and k4*** are maintained by the controller of
u, both initialized to zero, and set to the givepandz, re-
spectively at the end of the SFE.

Updatev):

—
wu
Zw;éveN# Countenc'

count®?

. uv
sum enc

enc

. —
wu
— Zw;éve N SUMepes

uv wu
— Zw;évEN,:"numenc'
Send{sum@?., count®™. numi¥

num

enc
enc’ enc’ E’I'LC> to v.

MajorityCond(v): Return the output of SFE with the
controller of uw, where the condition to be evalu-

ated is: Cond (21,20, 23,74) = (wl_ flast < k)

vV (xQ — Rlest < k) Vo (@3 <O0Azi<0) V
(x5 > 0A x4 >0), using ZweN# count® |
Dwenpnumet, ALy, Al ~Af,. as the inputsz,

x, T3, T4 respectivelyklest and kis* are maintained by
the controller ofu, both initialized to zero, and set to the
givenz; andz, respectively at the end of the SFE.

On initialization for each wv € E}*, or on join of a neigh-
bor v: Setsumly,, sumly,, countly., count®? ., num?d.

andnum?. to E (0).

enc
On receiving (sum/,count’,num’)

vU ! VU /
sumg,,. < sum:, count,, . < count’, num

On change insumX® from s.,. to s . SetsumL® to

Senc--E (1), Sene—E (1), 8., +E (1),ands, .~ E (1) and

enc

after each assignment c&lhChangé). Finally, setsum
to s.,,. and callOnChangé).

enc
On a change insumX or count:* or on a call to On-

enc enc

Changsd): For eactw € E}': if MajorityCondv), call Up-
date(v).

v: Set
— num/’.

from

VU
enc

field). This special field is implemented as part of the obliv-
ious counter using the vectorization technique described in
Section 4.2. Thus, it cannot be separated from the message
itself. That way, when calculating a new oblivious counter
by summing the counters received from the neighbors, this
field will contain an encryption of 1 if and only if every
neighbor was counted exactly once. This will be checked by
the controller, who can decrypt this field when the broker
uses this newly calculated counter as the input to an SFE.
Because the shares are encrypted, they cannot be forged by
the broker. The accountant is the one responsible for creat-
ing, encrypting, and distributing the shares to neighbors.
Nevertheless, a malicious broker can still breach the pro-
tocol by selectively reusing received counters instead of the
latest ones as the protocol dictates. In this case, the shares
sum to an encryption of 1, but this is obviously still a vio-
lation of the protocol. To address this attack, we further ex-
tend the oblivious counter to include, in addition to the pre-
viously described fields, a vector of timestampsssigns,
in preprocessing, an entry in this vector to each neighbor.
Whenwv sends a message 4 it uses its controller to pro-
duce a timestamp vector which has the current time at the
designated entry and zero at the other. Wheadds up its
neighbors’ contributions, the outcome is a vector containing
their timestamps. Using SFE, the controller can then calcu-
late the maximal timestamp and return its value plus one
as the current timestamp af In addition, each controller
keeps a trace over the timestamps it receives from its bro-
ker as part of an SFE, and can thus detect violations.
Algorithms 1, 2, and 3 Secure-Scalable-Majority give
the privacy-preserving majority voting procedure we use,
for a broker, an accountant, and a controller respectively.
Algorithm 4 —Secure-Majority-Rule- is the main privacy-
preserving distributed mining algorithm of this paper.

5.3. Security analysis

The basic primitive for which combined statistics are
gathered in our algorithm is majority vote. A broker queries
its controller for the majority on two occasions: to decide
whether a message should be sent to a neighbor, and to find
out whether a local candidate rule is correct.

Assume that at time; the broker queries its controller,
and that this query is in the context of a rule for which votes
have been gathered from the group of resourndesand
the set of transactiongb,,. Assume that later, at tim&

(t2 > t1) the broker makes another query, this time about
the votes of resources i}, and set of transaction#,, .

In our algorithm, the controller outputs the majority vote
only if the difference between two consecutive queries is of
at leastt transactions anél resources. Otherwise, the con-
troller provides an output which is independent of the data.
Furthermore, because in our algorithm votes are always ac-



Algorithm 2 Secure-Scalable-Majority Algorithm for an
accountant of resourae

Algorithm 4 Secure-Majority-Rule Algorithm for a bro-
ker of resource:

Local data: Database) B}*, the encryption key, the sét}*
of edges colliding with:, and a countet initialized to 1.

Encrypted messages structure:{counter, share, T,
Ty Togs o T, )ene - counter is the issue of the message,
share is the shares’ special field, afig) are the timestamps
of u and its neighbors respectively.

On initialization or
and distribute

ZUGN;L D (share®’.) = 1.
On request from the broker for support count of candi-

date ruler = (X = Y, A\) or on a change in the database
affecting this count:

Create
such that

on change in N}
random shareshare*?

enc

e Cyclically, read a few transactions from the database

DB},

e For each transactiorf” which last read beforer
was generated: IfX C T, updater.counte,.
r.counten.+E (1). If X UY C T, updater.sumen, «
r.8UMene+F (1).

o Send((r.sumenc, share,, F (t),E(0),..., E(0))
(r.countene, share,, E (), E(0),..., E(0)).,.)
back to the broker.

e Increase.

—

enc’

Algorithm 3 Secure-Scalable-Majority Algorithm for a
controller of resource

Local data: The decryption key and the sét' of edges
colliding with .

On request from the broker for an SFE with
input  (counter, share, T\, Ty,,...,Ty,) ., cONdition
cond for neighbor w:

e If D (share) # 1, broadcast that the brokereis ma-
licious and halt further execution.

e If D(T,) < T, for somev € N}, broadcast that re-
sourcev is malicious and halt further execution.

e Run the requested SFE with the broker, and lle¢ the
final message to be sent to it.

° Send(y, (counter, sharey,, Ty, , ... ,Tvd>mc) to the
broker, wherel’, = 0 for all v € N}, exceptly, =
E (1) +E (mazyeny D (T)).

e SetT, — D (T,) for eachv € N

cu‘mulated, we have théz@l C W, anddb;, C db,,; thus,
U};}) Vi, €V, and U;.;}) dby; C db,. Consequently, for
anyG C {V;,,...,V;,_, }, either|V;, A (UG)| > k or the

controller does not provide the majority vote.

Inputs of resource u: The setE}* of edges colliding with
u, the set of itemd, the frequency thresholinFreq, and
the confidence threshoMinCont

Output of resource u: The interim set of rulef,, [DB,].
Local variables: (X = Y,\) denotes a candidate-rule
X = Y with desired majority threshold. C is a set
of candidate rules together with countersum.,. and
r.countenc, both initially set toE (0).

Initialization: SetC — {( = {i} ,MinFreq) |i € I}.
Repeat the following continuously:

e For each ruler € C for which there is no active
Secure-Scalable-Majoritinstance, initiate one using
(r.8UMene, r.countene, .A) @s the input.

e Foreachrule € C, ask the accountant for an updated
support count for-.

e Once every few cycles:

— Set R, [DB,] to the set of rulesr € C which
their correspondingSecure-Scalable-Majorityn-
stance outputsue.

— For eachr = (§ = X, MinFreq) € R, [DB],i €
X:if v = (X\ {i} = {i},MinConf ¢ C, addr’

toC.

—For eachr; = (X=YU{ii},\),r2 =
<X:>YU{i2},)\> S RM[DBt], i1 < gl if
r = <X:>YU{i1,i2},)\> ¢~ C and Vi3ey
<X =YU {il,ig} \ {13},)\> € R, [DB[»], addr’
toC.

On receiving a Secure-Scalable-Majoritymessage rele-
vant to rule r = (X =Y, \), from a neighbor v: If

r¢ C,addittoC. If v = (0= XUY,\) ¢ C, add

r’ to C as well. In any case, forward the message to the ap-
propriate locaSecure-Scalable-Majoritynstance.

those queries that &TTP would have provided (accord-
ing to Definition 3.1) the outputs. The broker-controller in-
teractions in our algorithm can thus be simulated in the
ideal model when &-TTP is used instead of the controller.
This means thak-security is retained both with respect
to resourcesk-resources-security) and to transactiohs (
transactions-security). Thus, the algorithnkisecure.

6. Experimental Results

The important characteristics &ecure-Majority-Rule
are its convergence rate and its infinite scalability. To eval-
uate these as well as other characteristics, we implemented
a simulator capable of running thousands of simulated re-

This means the controller provides outputs to exactly sources, connected via links with different propagation de-
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Figure 2. Recall and precision of Secure-Majority-Rule . In all three databases, by the time each resource has
scanned its part of the database almost three times, the average recall and precision have already reached 90%, an almost-
complete level of confidence. This is in comparison to two scans in [15], and just a single scan in [20], and is due to the
intra-resource communication required.

lays as in the real world. Network topology was gener- rules in the resource’s interim solution respectively. Dur-
ated using the BRITE [5] topology generator (based on ing static periods, in which the database and the system do
the Baralsi-Albert model [4]). Synthetic databases were not change, recall and precision converge to one. To ana-
produced using the standard association patterns generatiolyze the performance @ecure-Majority-Rulewe describe
tool from the IBM Quest group [16]. As is usually the case the convergence rate of recall and precision (see Figure 2).
when profiling data mining algorithms, we generated three
databases: T512, T1014, and T2016, where the number after
the T denotes the average transaction length and the num- -
ber after the | stands for the average pattern length. Each 016'2' Scalability
the three databases contains a million transactions. Using
standard, pair-wise independent hashing technigues, trans- In order to demonstrate that the good convergence rate of
actions were sampled from the database to simulate the lo-Secure-Majority-Rulés not affected by the number of par-
cal database of each resource. This technigue allowed us téicipants, we measured the time it takes to reach a global re-
overcome memory limitations and thus to simulate a larger call of 90% for different numbers of resources (see Figure
number of resources. In all experiments, unless explicitly 3). To simulate a large number of resources, these experi-
defined otherwise, the number of resources was 2,000, thenents were conducted for the special case of a single item-
size of each local database was 10,000 transactions, and theet. This change does not affect the overall result, because
privacy argument was 10. In all experiments each resource in our algorithm the votes of all candidates take place con-
processed 100 transactions at each step, and on every fiftihurrently.
step communicated with its controller to create new candi-
date rules. Thus, the local database is scanned once every
100 steps. We smulate dynamlg Qatabases by .|ncrement|n%_3. The Effect of the Privacy Parameter
every resource with twenty additional transactions at each
step.
P The privacy parametek specifies the least size of a
6.1. Convergence Rate group for which our algorithm allows learning combined
statistics. Thus, the higher its value, the greater the secu-
The quality of an interim solution is measured byrits rity. Howeyer, increasin_@- trades off with _perfprmance. In
call and precision The recall and precision of at timet this experiment we again mgasured the time it take§ toreach
|R.[DBANRIDB,]| |R.[DBANRIDB,]| a global recall of 90% for different values bf(see Figure
[RIDB.]| and |Ru[DB,]| 4). The experiment shows that the dependency of our algo-
age of correct rules uncovered and the percentage of correctithm onk is logarithmic and thus practical.

are

, the percent-
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Figure 3. Scalability of
Significance of a rule is defined as:

Secure-Majority-Rule
ZUGVt sum?
Ay vev, count?
(the percentage of transactions for which the rule is cor-

rect divided by the majority threshold, minus one). It is
notable that for any significance level, there is some con-
stant amount of resources for which the number of re-
quired steps does not increase even if more resources
are added. The closer the significance is to zero (the per-
centage of transactions for which the rule is correct is
closer to the threshold), the more steps are required (be-
cause a larger portion of the global database should be
collected for deciding whether the rule is globally cor-
rect). These results are typical for local algorithms.

Figure 4. The effect of the privacy parameter
-1 on the performance of Secure-Majority-Rule
The tradeoff between security and performance is log-
arithmic and thus practical. This experiment was con-
ducted using the T1014 database.
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