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Abstract 
 

We describe the implementation and evaluate the 
performance of a Replica Location Service that is 
part of the Globus Toolkit Version 3.0.  A Replica 
Location Service (RLS) provides a mechanism for 
registering the existence of replicas and discovering 
them. Features of our implementation include the use 
of soft state update protocols to populate a 
distributed index and optional Bloom filter 
compression to reduce the size of these updates. Our 
results demonstrate that RLS performance scales 
well for individual servers with millions of entries 
and up to 100 requesting threads. We also show that 
the distributed RLS index scales well when using 
Bloom filter compression for wide area updates. 
 
1. Introduction 
 

Managing replicated data in Grid environments is 
a challenging problem. Data-intensive applications 
may produce data sets on the order of terabytes or 
petabytes. These data sets may be replicated within 
the Grid environment for reliability and performance. 
Clients require the ability to discover existing data 
replicas and create and register new replicas.  

A Replica Location Service (RLS) is one 
component of a Grid data management architecture.  
An RLS provides a mechanism for registering the 
existence of replicas and discovering them. In an 
earlier paper [1], we described a flexible RLS 
framework that allows the construction of a variety 
of replica location services with different 
performance, reliability and overhead characteristics. 
The RLS framework was co-developed by the 
Globus and DataGrid projects.  

In this paper, we describe a Replica Location 
Service implementation based on our earlier 
framework. We evaluate the performance and 
scalability of individual RLS servers and the overall 
distributed system.  

In addition to Replica Location Services, other 
components of a Grid replica management system 
may include consistency services, selection services 
that choose replicas based on the current state of Grid 
resources, and data transport protocols and services. 
These components are outside the scope of this 
paper. 
 
2. The RLS Framework 
 

The RLS framework [1] upon which our 
implementation is based has five elements:  

•  Local Replica Catalogs (LRCs) that contain 
mappings from logical to target names 

•  Replica Location Indexes (RLIs) that 
aggregate state information about one or 
more LRCs with relaxed consistency  

•  Soft state update mechanisms used to 
maintain RLI state 

•  Optional compression of soft state updates 
•  Management of RLS member services  

Local Replica Catalogs (LRCs) maintain 
mappings between logical names and target names.  
Logical names are unique identifiers for data content 
that may have one or more physical replicas.  Target 
names are typically the physical locations of data 
replicas, but they may also be other logical names 
representing the data. Clients query LRC mappings 
to discover replicas associated with a logical name.   

In addition to local catalogs, we also provide a 
distributed higher-level Replica Location Index. Each 
RLI server aggregates and answers queries about 
mappings held in one or more LRCs.  An RLI server 
contains a set of mappings from logical names to 
LRCs.  A variety of index structures can be 
constructed with different performance and reliability 
characteristics by varying the number of RLIs and 
the amount of redundancy and partitioning among 
them. Figure 1 shows one example configuration. 

Information in the distributed RLIs is maintained 
using soft state update protocols.  Each LRC sends 
information about its mappings to zero or more 



RLIs.  Information in RLIs times out and must be 
periodically refreshed by subsequent soft state 
updates. An advantage of using soft state update 
protocols is that we are not required to maintain 
persistent state for an RLI.  If an RLI fails and later 
resumes operation, its state can be reconstructed 
using soft state updates.   

LRC LRC LRC LRC

RLI RLI RLI

Replica Location Index Nodes

Local Replica Catalogs  
Figure 1: Example Replica Location Service 
configuration 

Soft state updates may optionally be compressed 
to reduce the amount of data sent from LRCs to RLIs 
and reduce storage and I/O requirements on RLIs.   
The RLS framework paper proposed several 
compression options, including compression based 
on logical collections and the use of Bloom Filter 
compression [2][3], in which bit maps are 
constructed by applying a series of hash functions to 
logical names.  The framework paper also proposed 
partitioning of LRC updates based on the logical 
name space to reduce the size of soft state updates. 

The final component of the RLS framework is a 
membership service that manages the LRCs and RLIs 
participating in a Replica Location Service and 
responds to changes in membership, for example, 
when a server enters or leaves the RLS.  Membership 
changes may result in changes to the update patterns 
among LRCs and RLIs.   

3. An RLS Implementation 
 

Based on the RLS framework above, we have 
implemented a Replica Location Service that is 
included in the Globus Toolkit Version 3.0.  In this 
section, we describe features and design choices 
made for our implementation.   
 
3.1 The Common LRC and RLI Server  
 

Although the RLS framework treats the LRC and 
RLI servers as separate components, our imple-
mentation consists of a common server that can be 
configured as an LRC, an RLI or both.  Figure 2 
shows the server design. 

The RLS server is multi-threaded and is written in 
C.  The server supports Grid Security Infrastructure 
(GSI) authentication.  An RLS server may have an 
associated gridmap file that maps from Distinguished 
Names (DNs) in users’ X.509 certificates to local 
usernames.  Authorization to perform particular RLS 
operations is granted to users based on access control 
lists that are included in the server configuration. 
Access control list entries are regular expressions that 
grant privileges such as lrc_read and lrc_write access 
to users based on either the Distinguished Name 
(DN) in the user’s X.509 certificate or based on the 
local username specified by the gridmap file.  The 
RLS server can also be run without any 
authentication or authorization, allowing all users the 
ability to read and write RLS mappings.   
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Figure 2: RLS Implementation 

The RLS server back end is a relational database.  
Because we use an Open Database Connectivity 
(ODBC) layer between the server and the relational 
database back end, it is relatively easy to provide 
support for a variety of relational database back ends.  
Currently supported back ends include MySQL and 
PostgreSQL.  RLS versions 2.1.3 and later also 
support an Oracle database back end.   

The table structure of the LRC relational database 
back end is relatively simple and is shown in Figure 
3.  It contains a table for logical names, a table for 
target names and a mapping table that provides 
associations between logical and target names.  There 
is also a general attribute table that associates user-
defined attributes with either logical names or target 
name as well as individual tables for each attribute 
type (string, int, float, date).  Typically these 
attributes are used to associate such values as size 
with a physical name for a file or data object.  
Finally, there is a table that lists all RLIs updated by 
the LRC and one that stores regular expressions for 
LRC namespace partitioning. 
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Figure 3: Relational tables used in LRC and RLI database implementations 

Typically, an external service populates the LRC to 
reflect the contents of a local file or storage system.  
Alternatively, a workflow manager or a data 
publishing service that generates new data items may 
register them with the RLS.  

In version 2.0.9 of the RLS, which is evaluated in 
this paper, the RLI server uses a relational database 
back end when it receives full, uncompressed updates 
from LRCs.  This relational database contains three 
simple tables, as shown in Figure 3: one for logical 
names, one for LRCs and a mapping table that stores 
{LN, LRC} associations.  When an RLI receives soft 
state updates using Bloom filter compression 
(described below), no database is used in the RLI; 
Bloom filters are instead stored in RLI memory. 
 
3.2 Soft State Updates 
 

Local Replica Catalogs send periodic summaries of 
their state to Replica Location Index servers.  In our 
RLS implementation, soft state updates may be of four 
types: uncompressed updates, those that combine 
infrequent full updates with more frequent incremental 
updates, updates using Bloom filter compression [2], 
and updates using name space partitioning.   

An uncompressed soft state update contains a list of 
all logical names for which mappings are stored in an 
LRC.  The RLI creates associations between these 
logical names and the LRCs. To discover one or more 
target replicas for a logical name, a client queries an 
RLI, which returns pointers to zero or more LRCs that 
contain mappings for that logical name.  Then the 
client queries LRCs to obtain the target name 
mappings.  

Soft state information eventually expires and must 
be deleted. An expire thread runs periodically and 
examines timestamps in the RLI mapping table, 
discarding entries older than the allowed timeout 
interval.   

When using soft state updates, there is some delay 
between when changes are made in LRC mappings and 
when those changes are reflected in RLIs.  Thus, a 
query to an RLI may return stale information.  In this 
case, a client may not find a mapping for the desired 
logical name when it queries an LRC. An application 
program must be sufficiently robust to recover from 
this situation and query for another replica of the 
logical name.  
 
3.3 Immediate Mode  
 

To reduce both the frequency of full soft state 
updates and the staleness of information in an RLI, our 
implementation supports an incremental or immediate 
mode where infrequent full updates are combined with 
more frequent incremental updates that reflect recent 
changes to an LRC.  Immediate mode updates are sent 
after a short, configurable interval has elapsed (by 
default, 30 seconds) or after a specified number of 
LRC updates have occurred.  Periodic full updates are 
required because RLI information eventually expires 
and must be refreshed. In practice, the use of 
immediate mode is almost always advantageous. The 
only exception is when large numbers of mappings are 
loaded into an LRC server at once, for example, during 
initialization of a new server.    

 



3.4 Compression 
 

The compression scheme provided by our 
implementation uses Bloom filters, which are arrays of 
bits [2].  A Bloom filter that summarizes the state of an 
LRC is constructed by performing multiple hash 
functions on each logical name registered in the LRC 
and setting the corresponding bits in the Bloom filter.  
The resulting bit map is sent to an RLI, which stores 
one Bloom filter per LRC.  For RLS version 2.0.9, no 
relational database back end is deployed for RLIs that 
receive Bloom filter updates.  Rather, all Bloom filters 
are stored in memory, which provides fast soft state 
update and query performance.   

When an RLI receives a query for a logical name, it 
performs the same hash functions against the logical 
name and checks whether the corresponding bits in 
each LRC Bloom filter are set.  If the bits are not set, 
then the logical name is not registered in the 
corresponding LRC.  However, if the bits are set, there 
is a small possibility that a false positive has occurred, 
i.e., a false indication that the LRC contains a mapping 
for that logical name.  The probability of false 
positives is determined by the size of the Bloom filter 
bit map as well as the number of hash functions 
calculated on each logical name.  Our implementation 
sets the Bloom filter size based on the number of 
mappings in an LRC (e.g., 10 million bits for 
approximately 1 million entries). We calculate three 
hash values for every logical name.  These parameters 
give a false positive rate of approximately 1%. 
Different parameters can produce an arbitrarily small 
rate of false positives, at the cost of larger bit maps or 
more overhead for calculating hash functions.  
 
3.5 Partitioning 
 

Finally, our implementation supports partitioning of 
soft state updates based on the logical name space.  
When partitioning is enabled, logical names are 
matched against regular expressions, and updates 
relating to different subsets of the logical namespace 
are sent to different RLIs. The goal of partitioning is to 
reduce the size of soft state updates between LRCs and 
RLIs. Partitioning is rarely used in practice because 
complete Bloom filter updates are efficient to compute 
and greatly reduce the size of soft state updates. 
 
3.6 Membership service 
 

Our current implementation does not include a 
membership service that manages LRCs and RLIs 
participating in the distributed system.  Instead, we use 
a simple static configuration of LRCs and RLIs.  As 

the RLS implementation evolves into a Web service 
implementation [4][5], we will implement a member-
ship service on top of registries provided by Web 
service environments  
 
3.7 RLS Clients 
 

The RLS implementation includes two client 
interfaces, one written in C and one that provides a 
Java wrapper around the C client.  Table 1 lists many 
of the operations provided by the LRC and RLI clients.  
Each of these operations may correspond to multiple 
SQL operations on database tables.  
  

Table 1: Summary of LRC and RLI Operations 

LRC Operations  
Mapping 
management 

Create mapping, add, delete, 
bulk create,bulk add, bulk delete 

Attribute 
management 

Create attribute, add, modify, 
delete, bulk create, bulk add, 
bulk modify, bulk delete 

Query operations Query based on logical or target 
name, wildcard queries, bulk 
queries, query based on attribute 
names or values 

LRC 
management 

Query RLIs updated by this 
LRC, add RLI to update, 
remove RLI from update list  

RLI Operations 
Query operations Query based on logical name, 

bulk queries, wildcard queries 
RLI management Query LRCs that update RLI 
 
 

4. Methodology for Performance Study 
 

Unless otherwise indicated, the software versions 
used in our performance study are those indicated in 
Table 2.  

Table 2: Software versions used 

Replica Location Service Version 2.0.9 
Globus Packaging Toolkit Version 2.2.5 
libiODBC library Version 3.0.5 
MySQL database Version 4.0.14 
MyODBC library (with MySQL) Version 3.51.06 
PostgreSQL database Version 7.2.4 
Psqlodbc library(with PostgreSQL) Version 7.3.1 

 
Our first set of tests evaluates the performance of 

individual Local Replica Catalogs (LRCs) and Replica 
Location Indexes (RLIs).  We submit requests to these 



catalogs using a multi-threaded client program written 
in C that allows the user to specify the number of 
threads that submit requests to a server and the types of 
operations to perform (add, delete, or query mappings). 
We typically initiate 3000 operations for add trials and 
20,000 or more operations for query trials to achieve 
efficient server performance and determine the rate of 
operations. For each performance number reported in 
our study, we perform several trials (typically 5) and 
calculate the mean rate over those trials. For each set 
of trials, a server is loaded with a predefined number 
of mappings. The database size is kept relatively 
constant during a performance test. For example, in 
case of add tests, the mappings that are added in each 
trial are deleted before subsequent trials are performed.   

The second set of tests measures soft state update 
performance between LRC and RLI servers. We 
measure the performance of uncompressed updates as 
well as updates that use Bloom filter compression.  For 
these tests, LRC servers are loaded with a predefined 
number of mappings and are forced to update an RLI 
server. The time taken for soft state updates to 
complete is measured from the LRC’s perspective.   
 
5. Performance and Scalability of the RLS 
Implementation 
 

In this section, we present performance and 
scalability results for our RLS implementation.  First, 
we present operation rates for adds, deletes and queries 
for LRCs with a MySQL relational database back end.  
Next, we demonstrate the importance of sensitivity to 
back end characteristics by measuring the effect of 
garbage collection in the PostgreSQL database. We 
also present query performance for RLIs that use 
uncompressed and Bloom filter soft state updates.  We 
demonstrate that uncompressed soft state updates don’t 
scale well for an RLS that contains a large number of 
replica mappings, suggesting the need to use 
immediate mode or compression. Finally, we 
demonstrate good scalability with Bloom filter 
compression.   
 
5.1 LRC Performance for MySQL Back End 
 

In this set of experiments we present LRC 
performance results for a MySQL relational database 
back end.  The clients in this test were dual Pentium-
III 547 MHz workstations with 1.5 Gigabytes of 
memory. The server was a dual Intel Xeon 2.2 GHz 
processor with 1 Gigabyte of memory. The clients and 
server were on the same 100 megabit per second local 
area network. 

First, we show that LRC operation rates depend on 
whether the database back end immediately flushes  
transactions to the physical disk.  If the user disables 
this immediate flush, then transaction updates are 
instead written to the physical disk periodically. This 
maintains loose consistency, providing improved 
performance at some risk of database corruption. 
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Figure 4: Add Rates for LRC with MySQL back 
end with flush enabled and disabled. 
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Figure 5: Query Rates for LRC with MySQL 
back end with flush enabled and disabled. 

Figure 4 and Figure 5 show the performance of add 
and query operations, respectively, for an LRC with a 
MySQL back end with 1 million entries when the 
database flush is enabled and disabled.  For these tests, 
the client OS version was Red Hat Linux 9 and the 
Server OS version was Red Hat Linux 7.2. Operations 
are issued by a single client with multiple threads.  For 
add operations, there is a significant performance 



difference when the database flush is enabled and 
disabled, with add rates of approximately 84 adds per 
second and over 700 per second, respectively. By 
contrast, there is little difference in query performance 
in Figure 5 whether the database flush is enabled or 
disabled, since query operations do not change the 
contents of the database or generate transactions. 

Because of the significant performance 
improvement offered for update operations by 
disabling the immediate database flush, we recommend 
that RLS users disable this feature.  The remainder of 
our performance results in this paper will reflect the 
database flush being disabled, both for the MySQL and 
the PostgreSQL databases.   

Figure 6 shows operation rates when multiple 
clients with ten threads per client are issuing 
operations to a single LRC. The same server described 
above was running the Debian Linux 3.0 operating 
system during this test.  The LRC achieves query rates 
of 1700 to 2100 per second, add rates of 600 to 900 
per second and delete rates of 470 to 570 per second.  
The rates drop as the total number of threads increases. 
Query and delete rates drop about 20% and add rates 
drop about 35% when increasing from 10 to 100 
requesting threads.  

For comparison, Figure 7 shows native MySQL 
database performance for similar operations.  For this 
test, we imitated the same SQL operations performed 
by an LRC for query, add and delete operations but 
made these requests directly to the MySQL back end.  
These results show that the LRC adds some overhead 
compared to the native MySQL database.  This 
overhead is highest for query operations, where the 
LRC server achieves about 80% of the native MySQL 
query rate for a single client with 10 threads and about 
70% of the native database performance for 10 clients 
with 100 threads. The overheads are lower for add and 
delete operations. Add rates on the LRC for a single 
client are about 89% of the native database 
performance. Add performance is actually better for 
the LRC than for the MySQL native database with 10 
clients (100 threads). We speculate that managing 
connections to 100 requesting threads and servicing 
add requests produces more overhead on MySQL than 
when requests are submitted through the LRC. The 
LRC achieves a delete rate of about 87% of the 
performance of the MySQL database for a single client 
and about 96% of the native database performance for 
10 clients. 

We are currently characterizing the source of RLS 
overheads. We speculate that overhead is incurred in 
authentication operations, thread management and 
using globus_IO libraries and our RPC protocol. 

Operation Rates, 
LRC with 1 million entries in MySQL Back End, 
Multiple Clients, Multiple Threads Per Client,

 Database Flush Disabled

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Number Of Clients

O
pe

ra
tio

ns
 P

er
 

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

 
Figure 6: Operation Rates for LRC with MySQL 
back end.   

Operation Rates for MySQL Native Database, 
1 Million entries in the mySQL back end, 

Multiple Clients, Multiple Threads Per Client, 
Database flush disabled
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Figure 7: Operation rates for native MySQL 
relational database performing similar SQL 
operations to those performed by the LRC.     

 
5.2 LRC Performance with PostgreSQL  
 

Sensitivity to the performance characteristics of the 
relational database back end is an important issue for 
those deploying the RLS in distributed environments.  
In this section, we present performance results for an 
LRC using a PostgreSQL relational database back end. 
For space reasons, we focus on one characteristic of 
PostgreSQL: the need to perform periodic garbage 
collection or “vacuum” operations. 

In this set of experiments, both the clients and 
server are workstations in a Linux cluster. Each 
machine is a dual Pentium-III 547 MHz box with 1 



Gigabyte of memory. The OS version is Red Hat 
Linux 7.2.  

In PostgreSQL, when mappings are ostensibly 
deleted from a table, they are not physically deleted 
from the disk. A garbage collection or “vacuum” 
operation must be performed periodically to physically 
delete them from disks. Vacuum operations are time-
consuming and may require exclusive access to the 
database, preventing other requests from executing. 
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Figure 8: Performance during add and delete 
tests  

Figure 8 shows how the performance of the 
database is affected when a large number of add and 
delete operations are performed followed by periodic 
vacuum operations. The size of the LRC database is 
110,000 entries. For each line in the graph, there is one 
client with one or more threads issuing add operations 
followed by delete operations.  In each trial, 10,000 
mappings are added and subsequently deleted. The 
graph shows a saw-tooth pattern. The add rate 
decreases steadily as the number of trials (marked by 
the ranges in the x-axis) increases, until a vacuum 
operation is performed after 10 trials (or 100,000 
operations).  After each vacuum operation completes, 
the add rate returns to its maximum value.  

These performance results suggest that in RLS 
environments with expected high rates of add and 
delete operations to LRC databases, the garbage 
collection algorithm for PostgreSQL may significantly 
limit RLS performance.  Under these conditions, 
MySQL may prove a better choice for the RLS 
database back end. 

 

5.3 RLI Query Performance 
 

Next, we present the query rates supported by an 
RLI with a MySQL back end in a 100 megabit per 
second LAN. The clients for these tests are cluster 
workstations that are dual Pentium III 547 MHz 
processors with 1.5 gigabytes of memory running Red 
Hat Linux version 9.  The server is a dual Intel Xeon 
2.2 GHz workstation with 1 gigabyte of memory 
running Debian Linux 3.0.   
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Figure 9: RLI Query Rates with Uncompressed 
Updates 
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Figure 10: RLI Query Rates with Bloom filter 
updates 

Figure 9 shows query rates of approximately 3000 
per second for an RLI that receives full, uncompressed 
soft state updates.  Figure 10 shows much higher query 
rates for an RLI that receives Bloom filter updates and 
stores them in memory. This RLI provides similar 
query rates for one and ten Bloom filters, but the query 
rate drops for 100 Bloom filters, indicating that the 
overhead of checking multiple Bloom filter bit maps 
on a query operation can be significant as the number 
of LRCs updating the RLI increases.  



5.4 Bulk Operations 
 

For user convenience, the RLS implementation 
includes bulk operations that perform a large number 
of add, query, or delete operations on mappings or on 
attributes. Bulk operations are particularly useful for 
large scientific workflows that perform many RLS 
query or registration operations. We perform bulk 
operation tests with 1000 requests per operation. The 
test configuration is the same as that in the last section. 
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Figure 11:  Bulk Operation Rates with 1000 
requests per operation.   

Figure 11 shows that bulk operations perform better 
than non-bulk operations by aggregating multiple 
requests in a single packet to reduce request overhead.  
The top line shows bulk query rates.  The query rate 
for a single client (10 threads) is 27% higher than the 
rate achieved by one client performing non-bulk 
queries in Figure 6. As the total number of threads 
increases, the performance advantage of bulk queries 
decreases. For 10 clients (100 threads), bulk queries 
provide only an 8% improvement in query rates.   

The lower line in Figure 11 shows combined 
add/delete operation rates. To maintain approximately 
constant database size for this test, each thread issues a 
bulk operation of 1000 adds followed immediately by 
a bulk operation of 1000 deletes. The combined bulk 
add/delete operations perform about 7% better than 
non-bulk add operations for a single client with 10 
threads (Figure 6). For 10 clients (100 threads), bulk 
add/delete performance is between that of non-bulk 
add and delete operations (15% worse than non-bulk 
add rates and 5% better than non-bulk delete rates).  

 
5.4 Uncompressed Soft State Updates  
 

Because the Replica Location Service is 
hierarchical, one important measure of its scalability is 

the performance of soft state updates from LRCs to 
RLIs.  Next, we measure the performance of uncom-
pressed soft state updates as LRCs become large and 
the number of LRCs updating an RLI increases. These 
tests were conducted in a LAN with 100 megabit per 
second Ethernet connectivity. Each LRC server 
sending updates is a node in the Linux cluster 
described earlier. The RLI server is a dual Intel Xeon 
2.2 GHz machine with 1 Gigabyte of memory running 
Redhat Linux 8. Each server uses a MySQL back end.  
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Figure 12: Uncompressed Soft State Update 
Times 

The log-linear scale graph in Figure 12 shows the 
performance of uncompressed soft state updates as the 
size of the LRC databases increases from 10,000 to 1 
million entries. Update times increase with the size of 
the LRC database.  When multiple LRCs are updating 
an RLI simultaneously, uncompressed soft state update 
performance slows dramatically.  For example, when 6 
LRCs are simultaneously updating the RLI, an average 
update takes approximately 5102 seconds for an LRC 
with 1 million entries.  These update times are long in 
a local area network and will show worse scalability in 
the wide area. The reason for this poor performance is 
that the rate of updates to an RLI database remains 
fairly constant as the RLI receives updates from 
multiple LRCs.  Thus, the average time to perform 
individual soft state updates increases. 

These results indicate that performing frequent 
uncompressed soft state updates does not scale well.  
Thus, we recommend the use of immediate mode with 
uncompressed updates or compression to achieve 
acceptable RLS scalability. Which update mode to 
deploy may depend on whether applications can 
occasionally tolerate long full updates and whether 
they require wildcard searches on RLI contents, which 
are not possible when using Bloom filter compression.  



5.5 Soft State Updates Using Bloom Filter 
Compression 
 

Next, we measured the performance of soft state 
updates using Bloom filter compression. These 
measurements were performed in the wide area, with 
updates sent from LRCs in Los Angeles to an RLI in 
Chicago. The mean round trip time was 63.8 
milliseconds. The LRC servers for these tests are nodes 
in the cluster already described. The RLI server is a 
dual processor Intel Xeon 2.2 GHz machine with 2 
gigabytes of memory running Red Hat Linux 7.3. The 
database used is MySQL. Three hash functions are 
used to compute the Bloom filter. The Bloom filter size 
is approximately 10 bits for every LRC mapping.   

 

Table 3: Bloom Filter Update Performance 

Database 
Size  
(number of 
mappings) 

Avg. Time 
to Perform 
Soft State 
Update 
(second) 

Avg.  
Time to 
Generate 
Bloom 
Filter (sec) 

Bloom 
Filter 
Size  
(bits) 

100,000 less than 1 2 1 Million 
1 Million  1.67 18.4 10 Million 
5 Million  6.8 91.6 50 Million 
 

Table 3 shows Bloom filter update statistics for a 
single client performing a soft state update for a range 
of LRC database sizes. The second column shows that 
Bloom filter wide area updates are significantly faster 
than uncompressed updates.  For example, a Bloom 
filter update for an LRC with 1 million entries took 
1.67 seconds in the WAN compared to 831 seconds for 
an uncompressed update in the LAN (Figure 12).   

The third column in the table shows the time 
required to compute a Bloom filter for a specified LRC 
database size. This is a one-time cost, since subsequent 
updates to LRC mappings can be reflected by setting 
or unsetting the corresponding bits in the Bloom filter. 
The fourth column shows the Bloom filter size, which 
increases with the number of LRC entries.   

Next, we demonstrate the scalability of Bloom filter 
updates in the wide area. For this test, we configured 
14 clients as LRCs with databases containing 5 million 
mappings. Each LRC sends wide area Bloom filter 
updates continuously (i.e., a new update begins as soon 
as the previous update completes). In practice, clients 
are likely to perform updates less frequently than this, 
so these results show worst-case scalability.  

Figure 13 shows that for up to seven clients sending 
continuous Bloom filter updates, the average client 
update time remains relatively constant at 6.5 to 7 
seconds. As the number of clients increases to 14, the 

average soft state update time increases to 11.5 
seconds, suggesting increasing contention for RLI 
resources. However, these update times are two to 
three orders of magnitude better than for 
uncompressed updates. For example, when 6 LRCs 
with 1 million mappings perform uncompressed 
updates to an RLI in Figure 12, the average update 
time is 5102 seconds in the local area network. In RLS 
deployments to date, there are typically fewer than 10 
LRCs updating an RLI. Bloom filter updates should 
provide good WAN scalability for such deployments. 
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Figure 13: Wide Area Update Scalability 

 
6. RLS Deployments 
 

Several Grid projects are using the Replica 
Location Service in research or production 
deployments.  These include the LIGO (Laser 
Interferometer Gravitational Wave Observatory) [7] 
project, which uses the RLS to register and query 
mappings between 3 million logical file names and 30 
million physical file locations. The Earth System Grid 
[6] deploys four RLS servers that function as both 
LRCs and RLIs in a fully-connected configuration and 
store mappings for 40,000 physical files. The Pegasus 
system for planning and execution in Grids uses 6 
LRCs and 4 RLIs to register the locations of 
approximately 100,000 logical files [8][9].  
 
7. Ongoing and Future Work  
 

The latest RLS version includes support for a 
hierarchy of RLI servers that update one another as 
well as performance and reliability improvements. 
Through the OGSA Data Replication Services 
Working Group of the Global Grid Forum [5], we are 
working to standardize a web service interface for 
replica location services. A version of RLS based on 
this interface is planned for Globus Toolkit Version 4. 



8. Related Work 
 

Related Grid systems include the Storage Resource 
Broker [10] and GridFarm [11] projects that register 
and discover replicas using a metadata service and the 
European DataGrid Project [12], which has 
implemented a different Replica Location Service 
based on the RLS Framework [1].   

Also relevant are replication and data location 
systems for peer-to-peer systems, including Chord, 
Freenet, Tapestry and OceanStore.  Distributed peer-
to-peer hash table systems such as Chord [13] and 
Freenet [14] perform file location and replication by 
hashing the logical identifiers into keys. Each node is 
responsible for a subset of the hashed keys and 
searches for a requested key within its key space, 
passing the query to a neighbor node "near" in key-
space if the key is not found locally. Tapestry [15] 
nodes form a peer-to-peer overlay network that 
deterministically associates each data object with a 
Tapestry location root; this root is used for location 
purposes. OceanStore [16] employs a two-part data 
location mechanism that combines a quick, 
probabilistic search with a slower, guaranteed traversal 
of a redundant fault-tolerant backing store.  

Several distributed file system projects have 
addressed replication and data location issues. In Ficus 
[17], collections of file volume replicas are deployed at 
various storage sites, and a given file may be replicated 
at any subset of these sites. Bayou [18] is a replicated 
storage system designed for an environment with 
variable, intermittent network connectivity. Bayou uses 
an update-anywhere replication model and a 
reconciliation scheme. 

Mariposa [19] is a distributed database management 
system that provides asynchronous replica 
management with relaxed consistency among copies.  
 
9. Summary 
 

We have described the implementation and 
evaluated the performance of a Replica Location 
Service included in the Globus Toolkit Version 3.0. 
Our results demonstrate that individual RLS servers 
perform well and scale up to millions of entries and 
one hundred requesting threads.  We also demonstrate 
that soft state updates of the distributed index scale 
well when using Bloom filter compression.  
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