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Abstract

Hash-based randomization is a powerful technique used
in clusters and distributed systems for load management.
It offers uniform distribution, efficient addressing, little
shared state, and scalability. However, simple hash-based
randomization is unable to deal with skew and heterogene-
ity and, therefore, cannot achieve load balance in many
environments. Virtual processors have been proposed as a
solution to simple randomization’s problem. We evaluate
an alternative load management scheme for heterogeneous,
shared-disk clusters. Our scheme directly tunes hash-based
randomized load placement using a technique called adap-
tive, non-uniform (ANU) randomization [40] and compares
favorably to the virtual processor approach. It provides
the load balancing benefits of virtual processors with less
shared state. It also automatically adapts to workload
and cluster configuration changes, such as failure and
recovery and adding or removing servers, without human
involvement. Experimental results show that our scheme
outperforms virtual processors and performs comparably
to prescient load-balancing algorithms. They also show
that our system maintains consistent performance across
all servers while moving a minimal amount of load.

1 Introduction

Simple hash-based randomized load management
schemes balance load effectively in homogeneous envi-
ronments and incur very small overhead, which makes
them appealing to traditional clusters and distributed sys-
tems. These schemes also provide an efficient addressing
scheme. Because hashing is deterministic and requires no
I/O operations, lookup operations can be quickly com-
pleted by one or a few hash computations, avoiding the
need of a replicated lookup table that would increase
the size of shared state among system nodes. Therefore,
these schemes provide good scalability and fit well into
the decentralized architecture of clusters and distributed

systems.
The trend of building clusters on commodity hardware

creates new challenges for cluster management and makes
simple randomized load management schemes no longer
suitable. Clusters are built increasingly with heterogeneous
commodity components, and large-scale grids are often
built upon multiple existing clusters that have different
configurations. Such diversity and scale imply that high
performance computing systems are becoming more dy-
namic, and, modern cluster load management systems
should efficiently support heterogeneous hardware envi-
ronments and changing system configurations. Developed
with the assumptions that nodes are homogeneous and
workload units are uniformly distributed, simple random-
ized schemes are not able to deal with hashing skew and
heterogeneity in current cluster and distributed systems.

Virtual processors [17, 28] have been adopted as a so-
lution to handle randomization variance and heterogeneity
in many systems [9, 17, 28, 31, 35]. A virtual processor is
an abstraction of some processing capacity and appears as
a real server. In reality, many of these virtual units are
mapped to a single processor. Systems dynamically map
virtual processors to physical servers to balance load. Such
mapping copes with load skew resulting from variance
and heterogeneity. However, virtual processor schemes do
not provide efficient addressing. They maintain the address
information of each individual virtual processor, which can
produce large shared state.

We have developed a technique called adaptive, non-
uniform (ANU) randomization [40] for the issue of load
management in heterogeneous environments. ANU ran-
domization is derived from the SIEVE adaptive hashing
strategy of Brinkmann et al [5], and, is suitable for
any cluster system that partitions workload [2, 15] and
has relatively short tasks, such as Web serving and file
metadata serving. It makes randomized load placement
tunable by adding a layer of abstraction between servers
and workloads. Workloads are hashed to a unit interval.
Servers are assigned to non-overlapping regions of the
same unit interval and serve the workload partitions that



fall into their assigned regions.
ANU randomization compares favorably to virtual pro-

cessors. It provides all the load balancing benefits with less
shared state. Instead of keeping the address information
of each individual virtual processor, our technique keeps
only the mapped region information of each server and,
therefore, reduces the size of shared state. Our technique
also has several other virtues. It ensures performance
consistency for application workload over any server in
a heterogeneous cluster. It preserves load locality when
adapting to cluster configuration changes. ANU random-
ization makes no assumptions about application behaviour
or server capability. Servers are dynamically interchange-
able and reconfigurable without negatively affecting per-
formance of applications, facilitating the trend of building
“clusters on demand” [7]. For example, the same server
might be deployed in different clusters at different times
during the same day or hours.

Simulation results show that ANU randomization per-
forms comparably to a prescient system and provides con-
sistent performance for application workload on any server
in heterogeneous clusters with minimal load movement.
Simulation results also demonstrate that virtual processor
systems need to maintain a much larger shared state to
achieve similar performance to ANU randomization.

2 Related Work
Much work has been done in the area of load man-

agement in clusters and distributed systems. A number
of dynamic load management techniques are designed for
parallel systems and homogeneous clusters [10, 37, 39, 41,
42]. Workload is transferred from heavily loaded servers to
lightly loaded ones. Another family of techniques [36, 43,
44] take into account server heterogeneity but require all
servers to periodically broadcast load and available capac-
ity. These techniques assume knowledge of the capacity
of any given server. For example, Zhu et al [44] use
knowledge of server capacity and employ a metric that
combines available CPU cycles and disk capacity to select
a node for processing an incoming request.

Randomization is a powerful technique for load man-
agement in clusters and distributed systems [24]. Many
systems, especially peer-to-peer systems [32, 33], rely on
randomization, or more specifically pseudo-random hash-
ing, to uniformly distribute workload. There are challenges
in balancing load dynamically in global scale networks.
Message exchanges may have to travel across the Internet,
which makes it difficult to move load. Also, herds of tasks
from many nodes may simultaneously move together to a
node that previously had available capacity [25]. Therefore,
these systems do not actively balance load. They use
simple randomized load placement, which balances load
in practice while avoiding message exchanges between

the system nodes [24, 26]. Although simple randomization
works well in certain environments, our experiments in-
dicate that it cannot support extreme workload and server
heterogeneity.

Virtual processors are another technique widely used
for load balancing in parallel systems and conventional
clusters [17, 28]. Each virtual processor is assigned a small
portion of the entire workload and the system dynamically
maps these virtual processors to physical processors to
achieve load balance. Peer-to-peer systems have adopted
the virtual processor approach to manage load on peer
nodes as well [9, 31, 35]. However, virtual processor-based
load balancing requires a larger shared state to achieve
similar performance to our system.

Similar to our approach, the distributed lookup schemes
used in some peer-to-peer systems [33, 35] also map values
(keys and nodes in these cases) to an artificial one-
dimensional space, and try to match them by their offsets
within this space. However, these schemes assume that
peer nodes are homogeneous and objects have the same
size [31]. By themselves, these schemes cannot handle
server or workload heterogeneity.

Many systems redirect requests within a cluster to
dynamically balance load. This is a popular form of load
balancing suitable for systems in which any server can
handle any request. Examples include DNS rotation [6,
18] and request routing in Web servers [3]. Similarly, I/O
systems use striping to distribute a large I/O request across
many disks in a load-balanced fashion [13]. This approach
applies when jobs are divisible and large, and, thus, are
not suitable for short tasks. Striping is frequently used
in multimedia servers [34]. There also has been research
in the area of functional decomposition [1, 2]. Instead of
dividing workload among cluster servers, the system places
different functions at different servers. For example, an
interactive file metadata workload can be split from a
throughput oriented large-file I/O workload [2].

There is a long history of load balancing through
process migration [4, 14, 21, 30] in which active processes
are transferred among computers. Process migration re-
organizes the assignment of long running jobs among a
cluster of computers. These techniques do not apply to
Web serving and file serving, which consist of relatively
short tasks.

3 Clustering and Performance Issues
Heterogeneity and variability in clusters makes them

vulnerable to performance inconsistency and partially ac-
counts for high administration costs, which often domi-
nates ownership costs [12, 19, 38].

Several factors contribute to the performance vulnera-
bilities of clusters. Clusters must adapt to changing work-
loads and hot spots. Conventional cluster load management



Figure 1. Shared-disk cluster system archi-
tecture.

systems focus on workload heterogeneity and are not sen-
sitive to server heterogeneity. As computing systems shift
from parallel homogeneous hardware to heterogeneous
commodity configurations, cluster nodes could easily de-
liver inconsistent performance for application operations.
Such inconsistency could negatively affect the overall
performance of applications and makes clusters vulnerable
to load misplacement. The trend of integrating clusters into
computational grids, together with the relatively high fail-
ure rate of commodity hardware, makes the situation even
worse, because it implies frequent configuration changes.

Human administration costs of cluster systems built
from commodity components are a large and growing
issue. For example, Feng et al reported that administration
cost dominated the total cost of ownership for a 24-
node cluster over a four-year period [11]. In most tra-
ditional cluster management systems, human intervention
is required in the cases of system configuration changes
such as adding/removing servers and failure and recovery.
To reduce high administrative cost, it is crucial to have
an adaptive, self-tuning cluster management system that
integrates automated management functions. Conventional
cluster management systems need to be upgraded with au-
tomated, efficient heterogeneity and dynamic configuration
support to ensure good performance and low cost.

To address the problems discussed above, the objective
of this work is to provide an efficient load management
system for heterogeneous, shared-disk clusters. The system
aims to maintain good and consistent performance for
applications in heterogeneous, shared-disk clusters without
sacrificing overall throughput. It also operates without
prior knowledge of heterogeneity, automatically adapts
to configuration changes, and minimizes load movement
during rebalancing due to cost.

A brief review of the architecture of shared-disk file
system clusters [16, 22, 23, 29] and their workload char-
acteristics helps to facilitate our discussion and motivate
our solution. A shared-disk file system cluster usually

uses a single global namespace, which is partitioned into
file sets. A file set is a subtree of the global namespace
and also the indivisible unit of workload assignment and
movement. Many shared-disk file system clusters distin-
guish between data and metadata, which are stored and
accessed separately. The shared disks hold file sets and
metadata of the file sets are assigned to file servers. In
a typical access, client sends a metadata request to a file
server. The server sends the location information and file
handler of the specified file(s) back to the client. Then
the client fetches data directly from the disk across the
storage area network (SAN). This architecture separates
metadata workload from data workload and targets them
to file servers and shared disks respectively. File servers
are loaded with single class of metadata operations and
do not serve sequential or large file I/O, which goes to
shared disks. Figure 1 shows the architecture of a typical
shared-disk file system cluster.

Our system focuses on managing load on file servers.
In shared-disk file systems, file servers are recoverable
resource. Imbalance in file servers adversely affects over-
all system performance, because clients acquire metadata
prior to data. Clients blocked on metadata may leave the
high bandwidth SAN underutilized. Our system does not
address load management issues in shared disks, which
is a separate problem by itself and requires different
strategies. Although our load management scheme was
initially designed for shared-disk file system clusters, it
is suitable for any cluster system that partitions workload
and has relatively short tasks.

4 ANU Randomization
We use a technique called adaptive, non-uniform (ANU)

randomization [40] to manage load placement. ANU ran-
domization is based on the SIEVE adaptive hashing tech-
nique described by Brinkmann et al [5]. The flexibility
of ANU randomization comes from an extra level of
abstraction in the workload to server mapping, where it
employs a unit interval to which it maps both workload and
servers. The ability to dynamically update the mapping of
the servers allows us to tune the system in a fashion that
is not possible when mapping workload directly to servers
(simple randomization).

ANU randomization first maps file sets to offsets in
a unit interval (Figure 2) by hashing the unique name
of each file set. We call such offsets in the unit interval
hashed offsets of file sets. The unique name of a file
set is specific to clusters, such as a pathname or content
fingerprint. The unit interval is partitioned into multiple
sub-regions of the same size. We assign to each server
one or more sub-regions. A server completely occupies
all but one assigned sub-region, which may be partially
occupied. In the following discussion, we call these sub-
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Figure 2. Servers are assigned sub-regions
of the unit interval. File sets of different size,
representing different workloads, are hashed
into this interval. File sets not mapped to
servers by the first hash are re-hashed until
assigned.

regions partitions and we call the segments within the
unit interval occupied by a server its mapped region. Each
server is then assigned file sets whose hashed offsets lie
within the server’s mapped regions. ANU randomization
balances load by changing the sizes of the server mapped
regions based on some simple performance metric. By
repartitioning the interval and scaling the server mapped
regions, this technique copes gracefully with hardware
changes, such as adding and removing servers.

For a system with � servers, we divide the unit interval
into ����� �
	����� partitions of equal size. The system does not
assign servers to all portions of the unit interval. Instead,
the system assigns servers to half of the unit interval, i.e.,
all server mapped regions sum to half of the total unit
interval. Half occupancy is maintained as an invariant to
make sure that there is always an assignment of partitions
satisfying the needs of all servers as well as an unassigned
partition available to a recovered server. File sets that hash
into un-mapped regions are re-hashed until assigned to
a mapped region as shown in Figure 2. Re-hashing is
performed using the next hash function among an agreed
upon family of hash functions. On average, the system
requires two probes to assign a file set, but we note that
a hash probe does no I/O when determining where a file
set is served. Successive hash probes incur negligible costs
and happen with probability ����� after � rounds.

The system manages server and workload heterogeneity
by changing the sizes of server’s mapped regions. ANU
randomization initially assigns servers mapped regions
of equal length, because it has no knowledge of server
capabilities. Each server monitors its performance and
produces a performance metric over a chosen time interval.
In this paper, we use latency as the performance metric
– a natural choice as the metadata workload consists
of little data and short-lived transactions. At the end of
each interval, each server computes its latency in the past
interval and reports it to an elected delegate server. The
delegate server examines all latencies and comes up with

an “average” value [40] for the whole system. The delegate
scales down the mapped regions for servers above the
average and scales up the mapped regions for servers below
the average. The delegate is designed to be stateless and
determines the new load configuration based solely on
reported latencies. If the delegate fails, the next elected
delegate runs the same protocol with the same information.

The system reorganizes load placement to conform to
configuration changes made by the delegate. The delegate
distributes a new mapping of servers to the unit interval to
all servers. This is the only replicated state needed by our
algorithm. Upon receiving updates to its mapped regions,
a server identifies shed file sets – file sets that it served
in the previous configuration that are served by another
server in the current configuration. The shedding server
flushes its cache with respect to shed file sets to create a
consistent disk image. Then, the server hashes each shed
file set to locate a new server and notifies the new server
that it is gaining workload.

In addition to handling server and workload heterogene-
ity, scaling the server mapped regions deals gracefully with
variance in hashing. For two identical servers A and B, we
might expect them to have mapped regions of the same
size. However, hashing variance may place more load at
A than B initially. A reduces its mapped region by a large
factor to shed more load. Mapped region scaling results in
better load balance than simple randomization even when
all servers and all file sets are homogeneous.

ANU randomization performs well when servers fail or
recover, or when servers are installed or removed, main-
taining good load balance and preserving load locality.
When a server fails, the load it can take effectively goes
to zero. Other servers increase their mapped regions to
preserve the half-occupancy invariant of the unit interval.
Only the file set(s) that were served previously by the
failed server are re-hashed to locate a new server. When a
server recovers or is added, it is assigned to a free partition
and all other servers are scaled back to preserve the half-
occupancy invariant. The framework treats commissioning
(installing) or decommissioning servers the same as a re-
covery or failure respectively. However, if the added server
increases � (the number of servers) such that there are
fewer than ����� �
	����� partitions, the algorithm re-partitions
the unit interval. The combination of the number of par-
titions and the half-occupancy invariant ensures that there
is always an available partition into which a recovered or
added server may be placed. We present an example in
Figure 3. The system starts with 4 servers in 8 partitions
with a highly skewed workload. The first server occupies
almost all of four partitions, while the remaining three
servers have little pieces in the remaining four partitions.
Adding a fifth server re-partitions the unit interval, creating
new partitions for more servers to be added. As long as
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Figure 3. Partitioning the unit interval when adding a server.

each server occupies at most one single partial partition,
free partitions are always available. Further partitioning the
unit interval does not move any existing load and does not
change the hash functions that address load, as does linear
hashing [20]. The system moves the minimum amount
of workload possible by scaling the mapped regions of
servers from last configuration. Therefore, load locality is
maintained and caches of file sets are preserved.

Load balance in this scheme is within a small constant
factor of optimal. For � servers and � file sets, each server
contains load ��� ���! #" with high probability. This result
depends on several factors including a multiple choice
heuristic that we have not described [5]. This variance is
as small as any known bound for randomized placement
and compares favorably to simple randomization in which
load is bounded by � � � �%$'& � � �� ��� � �)( �* #" .
5 Performance Evaluation

We evaluate the performance of our load management
system based on ANU randomization against three other
systems using a simulator driven by both a trace workload
and synthetic workload. Simulation results verify that our
system achieves load balance among heterogeneous server
nodes, provides consistent performance for applications,
and moves minimal amount of load when tuning load
placement. Simulation results also indicate that simple
randomization cannot cope with skew and heterogeneity
and virtual processor systems require a larger shared state
to achieve similar performance to our system.

5.1 Simulation Setup

For the evaluation, we constructed a trace-driven sim-
ulator using the YACSIM toolkit, which is a C-based
library for discrete event simulation. The simulator models
a shared-disk server cluster and servers use a first-in-first-
out queuing discipline for workload.

In some previous experiments [40], we have used a
one-hour DFSTrace [27] workload that contains 21 file
sets and 112,590 requests to drive our simulation. Because
DFSTrace has some deficiencies, such as being collected
on legacy hardware with limited heterogeneity, we use a
synthetic workload to drive most of the experiments in
this paper. This allows us to experiment with an arbitrary
amount of heterogeneity and helps to understand our
system’s characteristics under different hardware/workload

configurations. We use DFSTrace workload results for
comparison with synthetic workloads to ensure the sanity
of our results.

Our experiments include both server heterogeneity and
workload heterogeneity. Based on the number of file sets,
we simulate a five-server cluster. Servers 0, 1, 2, 3, and
4 have processing power 1, 3, 5, 7, and 9 respectively
to stress heterogeneity. More specifically, for the same
workload, if the least powerful server in our simulated five-
server cluster (server 0) consumes time + to complete a
metadata request, then the most powerful server (server 4)
consumes time +-,/. . In the synthetic workload, the total
amount of workload in each file set is defined as 021 where
0 is randomly chosen from interval [1,10] and 1 is a
scaling factor tuned to avoid overload of the whole system.

We investigate the performance characteristics of our
system against three other load management systems: sim-
ple randomization, dynamic prescient, and virtual proces-
sor. Simple randomization employs a pseudo-random hash
function to uniformly assign file sets to servers, allowing
us to compare our system with static, offline randomized
policies used in heterogeneous clusters. Dynamic prescient
realizes the optimal load balance through identifying the
permutation of file sets onto servers that minimizes av-
erage latency, because it has perfect knowledge of server
capabilities and workload properties. It provides the upper
bound of load balancing. The virtual processor system first
randomly distributes file sets into 354 virtual processors
where 3 is the number of physical servers and 4 is a
scaling factor chosen from interval [1,10] to tune the total
number of virtual processors in the system. By default,
we set the value of 4 to be 5. The system then utilizes
perfect knowledge about server capabilities and virtual pro-
cessor workload characteristics to map virtual processors
to servers in a way that minimizes average latency. This
mapping procedure is similar to that in dynamic prescient
except that the workload assignment and movement unit is
now virtual processor instead of file set. In the experiments,
we use two minutes as the load placement tuning interval
for our system, the dynamic prescient system, and the
virtual processor system in order to avoid over-tuning
while still providing responsiveness. It is possible to update
load placement at any time scale.
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Figure 4. Server latency for file systems trace (DFSTrace) workloads.

5.2 General Comparison

The general performance comparison is done in two
parts. First, we compare server latency in the four load
management systems to verify our system achieves load
balance. Second, we compare some aggregate metrics of
our system with dynamic prescient and virtual processor
systems to understand some load balance performance
details, such as throughput and performance consistency.

5.2.1 Server Latency

Figure 5 shows the latency of the five servers when
serving the synthetic workload over a two-hundred-minute
interval. The synthetic workload consists of 66,401 re-
quests against 50 file sets in a period of two hundred
minutes. The request inter-arrival times in each file set
are governed by a Pareto distribution that is heavy-tailed.
As shown in Figure 5, simple randomization performs
poorly. It is static algorithm and assumes homogeneity
in server capabilities. Therefore, it cannot respond to
skew in load placement. The weakest server’s performance
keeps degrading during the simulation and there is unused
capacity on more powerful servers.

Having prescient knowledge of server capacities and
workload characteristics, dynamic prescient and virtual
processor keeps the system balanced from the very be-
ginning, time 0. In the virtual processor system, the most
powerful server (server 4) has higher latency, or in other
words, lower performance than the second most powerful
server (server 3) around time 150. This is due to the larger

size of workload assignment unit and load skew among
virtual processors, which makes it difficult to do fine-
grained tuning and assign load proportional to each server’s
capacity. ANU randomization has no a-priori knowledge
of server heterogeneity and workload characteristics. It
initially assumes all servers and workloads are uniform.
But it quickly adapts to heterogeneity and reaches load
balances after several rounds of load placement tuning. The
results in Figure 5 follow our findings in Figure 4 (pre-
sented in previous work [40]). Simulations based on file
system traces indicate the sanity of our synthetic workload
by showing the same scaling and tuning properties on real
workloads.

5.2.2 Aggregate Metrics

Figure 6(a) shows the aggregate average latency of all
requests in the synthetic workload and its standard devi-
ation. Dynamic prescient has the best aggregate average
latency, because it employs optimal load mapping that
minimizes load skew. Therefore, dynamic prescient also
provides an upper bound of aggregate average latency, or
equivalently, throughput. Although virtual processors use
prescient knowledge of heterogeneity to do load mapping
as well, they perform slightly worse than dynamic pre-
scient due to load skew from the large size of workload
unit. The latency of ANU randomization is fairly close to
that of dynamic prescient, indicating that ANU randomiza-
tion provides throughput close to the upper bound without
using a-priori knowledge of heterogeneity.
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Figure 5. Server latency for synthetic workloads.

(a) Aggregate average latency and standard deviation. (b) Average latency of requests served on each server.

Figure 6. Aggregated metrics comparison.

Figure 6(b) presents the average latency of tasks served
by each individual server. Servers exhibit consistent aver-
age latency values in ANU randomization system, except
sever 0, the weakest server. A thorough analysis of the
experimental log files indicate that server 0 served only 248
requests (0.37%) out of the total 66,401 requests, and most
of the 248 requests were served on server 0 before ANU
randomization reached load balance. Therefore, the incon-

sistency of server 0 does not introduce significant skew into
system-wide performance consistency. These observations
indicate that application workloads will observe consistent
latency over any non-idle server in the cluster once the
system reaches balance. It will benefit applications that
have strict performance requirements. Moreover, as cluster
and grid systems extend to support Service Level Agree-
ments [7, 8], it is essential that application performance



Figure 7. Load movement during the syn-
thetic workload simulation.

is consistent over different servers in a heterogeneous
cluster or even in a large-scale grid. Results from dynamic
prescient and virtual processor are also shown in Figure 6
as references.

ANU randomization manages extreme server hetero-
geneity by ensuring the most powerful servers to achieve
good load balance while allowing some extremely weak
servers to sit idle, as revealed in Figure 5 where server 0
mostly sits idle after the system reaches load balance. ANU
randomization identifies such incompetent components and
notifies administrators.

Putting together results from the general comparison
experiments show that our load management scheme per-
forms comparably to the upper bound (dynamic prescient)
and provides the load balancing benefits of virtual proces-
sor schemes. Considering the fact that our system achieves
load balance without a-priori knowledge of heterogeneity,
it provides a competitive approach to load management.

5.3 Variable Load Experiments

One of the design goals of our system is to minimize
load movement when balancing load. It is very costly to
move workload of a file set from one server to another in
shared-disk clusters. The releasing server needs to flush
its cache, writing all dirty data to stable storage. The
acquiring server must initialize the file set. Furthermore,
the acquiring server starts with a cold cache, which hinders
initial performance. Therefore, our system is relatively
conservative in moving load in response to short-term
bursts in workload.

Figure 7 illustrates both the number of file sets moved
by ANU randomization over the course of synthetic work-
load simulation and the percentage of total workload that
has been moved during the same experiment.

Figure 7 shows that ANU randomization preserves load
locality, or in other words minimizes load movement,
during tuning. During the first several rounds of tuning,

ANU randomization actively moves load among servers
by scaling server’s mapped regions to adapt to server
and workload heterogeneity. During the whole simulation,
which consists of 100 rounds of tuning, our system totally
moves 112 file sets.

5.4 Comparison with Virtual Processor System

There is an important factor that affects the performance
of virtual processor systems: number of virtual processors.
With a small number of virtual processors, each will
be assigned more workload, which increases the size of
workload unit. However, with a large workload unit, it is
difficult to perform fine-grained load tuning and assign to
each server load proportional to its capacity, making load
placement vulnerable to skew and imbalance. In contrast,
a large number of virtual processors divides load finely, at
the expense of increased state. Because virtual processor
does not provide an efficient addressing scheme, it is es-
sential to keep the address information for each individual
virtual processor.1 Considering large clusters consisting
of tens of thousand of physical servers, maintaining the
shared state for many more virtual processors becomes a
serious concern.

On the other hand, the unit interval is the only shared
state in ANU randomization system. Therefore, it scales
with number of servers. The unit interval contains the
information of each server’s mapped region and provides
an efficient addressing scheme. We hash any given file
set’s unique name into the unit interval to locate the server
that is serving the file set, with possible re-hashing if the
previous hash falls into un-mapped region.

Figure 8(a) illustrates the tradeoff of virtual processor
systems. We vary the number of virtual processors from
5 to 50, because we simulate 5 servers and 50 file sets.
Each server can be assigned an arbitrary number of virtual
processors. With a small number of virtual processors, the
virtual processor system does not effectively balance the
synthetic workload, yielding bad performance for applica-
tions. Load placement is greatly improved with a large
number of virtual processors, which indicates a larger
shared state.

Figure 8(b) shows a closeup of Figure 8(a) and di-
rectly compares ANU randomization with virtual processor
systems. The virtual processor system achieves equivalent
performance to ANU randomization when using 30 virtual
processors for the 50 file sets, which indicates a relatively
large shared state. When the number of virtual processors
reaches 50, the virtual processor system outperforms ANU
randomization on latency and performs comparably to the
dynamic prescient system. When the number of virtual

1The addressing information could also be implemented in the Chord-
style ring [35] to avoid replication at the expense of 687�9/:<;>= probes to
the data structure.
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(b) Performance of virutal processor system with differ-
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Figure 8. Performance of virtual processor system.

processors is equal to the number of file sets, each virtual
processor contains only one file set on average, which
indicates the workload assignment and movement unit is
effectively file set. The comparison in Figure 8 shows that
virtual processor systems need to maintain a large shared
state to achieve similar performance to ANU randomiza-
tion.

6 Conclusion

This paper shows that our load management system
based on ANU randomization technique addresses several
performance issues in heterogeneous, shared-disk clusters.
Experimental results indicate that ANU randomization
deals with heterogeneity in both server and workload
and performs comparably to a prescient system. The re-
sults also demonstrate that ANU randomization maintains
performance consistency, minimizes load movement, and
provides all the load balancing benefits of virtual processor
systems with less shared state.

Our system has some properties that benefits cluster and
grid systems, including scalability, efficient addressing, and
load preservation. The scalability and addressing features
of ANU randomization compare favorably to both bin-
packing load balancing schemes [36, 43] and virtual pro-
cessor schemes, in which any workload unit can be placed
onto any server. To locate file sets, each computer must
maintain a table that maps file sets to a particular server.
This can represent a large amount of state to maintain and
replicate when dealing with large numbers of file sets,
increasing the time to reconfigure servers when moving
load or recovering from a failure. For load balancing,
ANU randomization also compares favorably to both bin-
packing and virtual processor schemes. During load tuning

and system configuration changes, ANU randomization
moves a minimum number of file sets, preserving the cache
contents of servers and reducing restart recovery times.
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