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Abstract

A self-configuring service can automatically leverage
distributed service components and resources to compose
an optimal configuration according to both the require-
ments of a particular user and the system characteristics.
One major challenge for building such services is how to
bring in service-specific knowledge, e.g., what components
are needed and optimization criteria to use, while still al-
lowing reuse of common service composition functionali-
ties. In this paper, we present an architecture in which ser-
vice developers express their service-specific knowledge in
the form of a service recipe that is used by a generic synthe-
sizer to perform service composition automatically. We ap-
ply our approach to three different services to illustrate the
flexibility and simplicity of the recipe representation. We
use simulations based on Internet measurements to evalu-
ate how an appropriate optimization algorithm can be se-
lected according to a developer’s service-specific trade-off
between optimality and cost of optimization.

1. Introduction
Infrastructures such as Globus [4] and the Open Grid

Services Architecture [5] enable dynamic discovery, moni-
toring, and deployment of distributed resources (e.g., com-
putation and storage servers) and service components (e.g.,
video transcoder and multicast proxy). This allows devel-
opers to leverage service components and resources to build
user-level services such as scientific visualization [16], dis-
tributed simulation [15], and video conferencing [11]. One
promising direction for developing such services is self-
configuration. Instead of statically integrating components
when the service is developed, self-configuring services dy-
namically combine available components and resources into
optimized service configurations at the invocation time, i.e.,
when a user request is received. This allows the service
composition process to take the particular user requirements
and the system characteristics into consideration.
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Recent research efforts to support dynamic service com-
position can be divided into two categories. Service-
specific architectures are designed for particular classes
of services/applications [3, 15, 9, 19, 16]. Examples in-
clude resource selection for resource-intensive applications
and resource allocation for services consisting of a set of
multi-fidelity applications. Others propose generic archi-
tectures that can compose different services using “type-
based composition” [8, 23, 20, 6, 13]. Components have
well-defined input/output (requires/provides) interfaces, so
a service composition module can automatically generate a
service configuration providing the requested interface(s).

One key difference between these two approaches is
the use of service-specific knowledge. Such knowledge
can greatly reduce the space of feasible configurations and
provide service-specific optimization criteria for selecting
components/resources. In the service-specific approach,
the service-specific knowledge is hard-wired into a service
composition module by the developer, so it is very diffi-
cult to leverage this effort in other services. On the other
hand, although the generic architectures can be reused by a
broad range of services, they cannot exploit service-specific
knowledge, often resulting in higher overhead and sub-
optimal configurations, e.g., using generic optimization cri-
teria such as minimizing the number of components.

In this paper we present an architecture for dynamic ser-
vice composition that strikes a balance between these two
approaches: our approach is general, yet developers can
introduce service-specific knowledge into the composition
process. The key elements of our architecture are the ser-
vice recipe, which expresses a developer’s service-specific
knowledge, and the synthesizer, which performs the ser-
vice composition. When a user request is received, the
synthesizer uses the knowledge in the recipe to automati-
cally perform service composition according to the speci-
fied user requirements and the system characteristics. Un-
like the service-specific architectures, our architecture pro-
vides generic service composition functionalities that can
be reused by developers of different services. In contrast
to the generic architectures, developers can express their
composition heuristics and optimization criteria in recipes
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Figure 1. A video streaming service

to customize how service composition is performed.
Our focus in this paper is on how service-specific knowl-

edge can be represented in a recipe that can be used by a
general synthesizer. Sections 2 and 3 describe the dynamic
service composition problem and application examples and
discuss previous efforts in this area. Section 4 presents our
architecture and describes how service-specific knowledge
is used to compose service configurations. Section 5 de-
scribes the physical mapping problem and discusses how
the synthesizer can select the best algorithm according to
service-specific trade-off. We conclude in Section 6.

2. Problem statement
Let us use a video streaming example to illustrate our

service model. A service developer who has expertise in
video streaming builds a self-configuring video streaming
service in which the service-specific knowledge is embed-
ded. A user who wants a low-bitrate MPEG-4 video stream
submits a request to the self-configuring service. The ser-
vice uses the embedded service-specific knowledge to au-
tomatically determine that a combination of an MPEG-
2 server and an MPEG-2-to-MPEG-4 transcoder can pro-
vide the best video quality for the user. Also accord-
ing to the service-specific knowledge, the service automat-
ically selects a server and a transcoder to minimize the
bitrate-weighted network distance for lower network re-
source consumption (see Figure 1). Of course, performing
this composition requires a support infrastructure that en-
ables service/resource discovery (e.g., finding video servers
and transcoders), network measurement (e.g., determining
which transcoder is closest to a video server), and compo-
nent deployment (e.g., authentication, run-time execution,
etc.). In this paper, we use existing solutions for the support
infrastructure as described in Section 4.4.

Now let us look at two more sophisticated examples of
dynamic service composition. Figure 2 shows an interac-
tive search service that supports application-specific filter-
ing (similar to Diamond [12]). A user wants to find a par-
ticular picture from an image collection distributed across
three storage servers. For efficiency, this service allows the
user to upload application-specific filters (e.g., “blue with
water-like texture”) to servers so that irrelevant pictures can
be discarded early. The service developer determines that
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Figure 3. A video conferencing service

if a storage server does not have sufficient computation re-
sources, a computation proxy can be used to run the filters.
Furthermore, to reduce the communication time, the selec-
tion of computation proxies is based on the objective shown.

Another example is the video conferencing service in
Figure 3. Five users want to hold a video conference: P1
and P2 have MBone conferencing applications vic/SDR
(VIC), P3 and P4 use NetMeeting (NM), and P5 uses a
receive-only handheld device (HH). The service developer’s
service-specific knowledge indicates that a configuration
supporting these users can be composed as follows. A
video conferencing gateway (VGW) is needed for protocol
translation and video forwarding between VIC and NM. A
handheld proxy (HHP) is needed to join the conference for
P5. The service uses an End System Multicast (ESM) [2]
overlay consisting of three ESM proxies (ESMPs) to enable
wide-area multicast among P1, P2, VGW, and HHP, The
criterion for selecting all the components is to minimize the
shown objective function to reduce the network resource us-
age. The weights in the function reflect the bandwidth us-
age, e.g., NetMeeting only receives one video stream.

These examples show that service-specific knowledge is
important for dynamic service composition. In this paper,
we present an architecture that enables service developers
to easily build self-configuring services that utilize the de-
velopers’ service-specific knowledge.



3. Related work
Recently, self-configuration is identified as one of

the fundamental features of “autonomic computing sys-
tems” [14, 7]. Self-configuring services in this pa-
per more specifically refer to services that perform dy-
namic service composition at initialization time to sat-
isfy each user request and system characteristics. Such
services are made possible in part by the emerging Grid
environments where infrastructures such as Globus [4]
and the Open Grid Services Architecture [5] enable dy-
namic discovery, monitoring, and deployment of dis-
tributed and heterogeneous resources and service compo-
nents. On the other hand, distributed component framework
(e.g., CORBA [18]) and Web service technologies (e.g.,
SOAP [24] and WSDL [25]) simplify dynamic composition
of components to provide user-level services.

To enable service developers to build self-configuring
services, there are two conflicting goals: simplicity and flex-
ibility. Previous efforts can be divided into generic and
service-specific approaches, each of which addresses one of
the goals. The service-specific architectures are designed
for particular services or applications, for example, allo-
cating resources dynamically for resource-intensive Grid
applications [3, 15], using shortest path algorithms to se-
lect components of a given service path in peer-to-peer
Grids [9], selecting components and resources given a set
of multi-fidelity applications [19], and selecting resources
for path-based resource-intensive applications [16]. This
approach requires each service developer to implement its
specialized service composition module that communicates
with support infrastructures, formulates the component se-
lection optimization problem, and solves the problem us-
ing algorithms. This approach is flexible since the de-
veloper has complete control of the composition module,
However, implementing such specialized modules can be
difficult for developers because it requires more than the
service-specific knowledge, e.g., a developer needs to know
how to formulate and solve optimization problems.

On the other hand, generic architectures can compose
different types of services using “type-based composi-
tion” [8, 23, 20, 6, 13], i.e., components have well-defined
input/output (requires/provides) interfaces. In the video
streaming example, the user requests an MPEG-4 input. A
generic service composition module can automatically de-
termine that this can be satisfied by a combination of an
MPEG-2 server (MPEG-2-Out) and a transcoder (MPEG-
2-In/MPEG-4-Out). This approach simplifies a developer’s
job. However, it does not (fully) utilize a developer’s
service-specific knowledge, which can reduce search space
and provide service-specific optimization criteria.

4. Recipe-based service composition
In this section, we present our architecture for recipe-

based service composition and describe how service-
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vice composition

specific knowledge can be represented in recipes.

4.1. Architecture
To achieve both flexibility and simplicity, we propose a

general architecture for recipe-based service composition,
shown in Figure 4. A service recipe is written by a ser-
vice developer and contains an operational description of
the service-specific knowledge. A synthesizer is generic
across different services and consists of two modules. The
facility module provides common, reusable service compo-
sition functionalities, e.g., component selection algorithms
and mechanisms for accessing the support infrastructure.
The facility interface exports the facility module function-
alities in the forms of an API and libraries that can be used
by developers to write recipes. The interpreter module ex-
ecutes a recipe submitted by a developer to compose a ser-
vice configuration for each user request.

Note that the generic and service-specific approaches
discussed earlier roughly represent two extreme cases of
this architecture. In the generic approach, the “recipe” is
an abstract specification containing only the highest-level
service-specific knowledge, e.g., the required input type.
All other tasks are automatically performed by the generic
“synthesizer”. This greatly limits the amount and type of
knowledge that can be represented. On the other hand, the
“recipe” in the service-specific approach is in fact a spe-
cialized service composition module implemented by the
service developer. The “synthesizer” becomes simply an
interface to the support infrastructure. This requires extra
implementation efforts from the developers in addition to
representing the service-specific knowledge.

In contrast, our approach lets developers design recipes
using a programming language such as Java, allowing a
more flexible representation of service-specific knowledge.
In addition, the common service composition functionali-
ties are provided by the synthesizer so that developers can
access these functionalities in their recipes without dealing



with the implementation details. The synthesizer can take
the form of a toolkit/library that can be used by develop-
ers to build self-configuring services, or a standalone en-
tity whereby a developer builds a self-configuring service
by submitting a recipe to the synthesizer.

At run time, a user can send a request to the synthesizer
specifying the user requirements. In the video conferenc-
ing example (Figure 3), the user request specifies the IP
addresses and conferencing applications of the five partic-
ipants. When the synthesizer receives the request, it ex-
tracts the user requirements, and the interpreter module ex-
ecutes the recipe to perform service composition. We divide
the composition process into two steps (similar to previous
work [8, 23, 20, 6, 13, 9]): abstract mapping and phys-
ical mapping. In abstract mapping, the synthesizer gen-
erates an abstract configuration specifying what types of
components (e.g., VGW, HHP, ESMP) are needed to sat-
isfy a request. Then a physical configuration is generated
that maps each abstract component in the abstract configu-
ration to a physical component (e.g., VGW⇒192.168.1.1,
HHP⇒192.168.2.2, etc.). Service-specific knowledge is
very important in both steps. Next, we discuss how we
use recipes to capture these two aspects of service-specific
knowledge in a general way.

4.2. Abstract mapping knowledge

An abstract configuration is a graph consisting of nodes
representing the abstract components and links representing
the connections between the components. While the syn-
thesizer needs to use the knowledge in the recipe to decide
what components and connections to use, the data struc-
tures for the graph are generic and can be reused across
services, so the service developer should not have to define
service-specific data structures to handle abstract configura-
tions. Therefore, in our approach, a developer uses generic
data structures and functions implemented by the facility
module to specify the knowledge of how to construct ab-
stract configurations in its recipe. Figure 5 lists the major
data structures and functions that are made available to de-
velopers through the facility interface.

Using the video conferencing service as an example,
Figure 6 shows how the service-specific abstract mapping
knowledge can be expressed in the recipe using this inter-
face. The right hand side is the recipe, basically a pro-
gram written in Java. We divide the recipe into three seg-
ments. The left hand side illustrates what service-specific
knowledge each of the recipe segments represents. The un-
shaded lines in the recipe correspond to the abstract map-
ping knowledge, and the shaded lines are for physical map-
ping. Here we look at how the abstract mapping knowl-
edge is represented in the three recipe segments. The first
segment inserts a VGW into the abstract configuration and
connects it with every participant who uses NetMeeting.

Data structure
AbsConf Represent abstract configurations; contains components and

connections.
AbsComp Represent abstract components; contains component proper-

ties (also sub-components, if any).
PhyComp Represent physical components (i.e., fixed nodes such as the

users); contains component properties.

Function
addComp(spec) Add an abstract component with the given spec-

ifications spec to the abstract configuration.
addConn(c1,c2) Add a connection between components c1 and

c2 to the abstract configuration.
addSubComp(n,spec) Add n identical sub-components (with spec) to

a component in the abstract configuration.
getProperty(prop) Get the value of the property named prop of a

component in the abstract configuration.

Figure 5. Abstract configuration API

The second segment adds an HHP for each handheld par-
ticipant and connects them. The third segment inserts an
ESM component with three ESMP sub-components and
connects ESM with the multicast endpoints. Note that
participants is the list of participants extracted from a
user request by the synthesizer; for simplicity, we use sym-
bolic names (e.g., “VGW”) to represent complete specifica-
tions of component type and attributes (e.g., “(serviceType
= VideoGateway) (protocols = H323,SIP)...”).

Given this recipe, generating an abstract configuration is
straightforward. When a user request is received, the syn-
thesizer executes the recipe to construct the abstract config-
uration conf.

4.3. Physical mapping knowledge
Given an abstract configuration, the synthesizer needs to

generate a physical configuration specifying which physi-
cal component should be selected for each abstract compo-
nent such that an objective is optimized. Therefore, physical
mapping involves identifying the objective function, formu-
lating the optimization problem, and solving the problem.

An important observation is that while the optimization
objective is service-specific, the latter two tasks are rela-
tively generic, e.g., optimization algorithms can be reused
for different services. Moreover, developers may not have
the expertise to formulate and solve optimization problems.
Therefore, our approach is to let a service developer specify
a service-specific objective function in the recipe using the
facility interface. The facility module then formulates an
optimization problem accordingly and solves it using built-
in algorithms.

An objective function is a function of metric terms, e.g.,
“5*latency(server,transcoder) + latency(transcoder,user)”.
To provide an interface for specifying such functions, we
first need to decide what metrics can be used in objective
functions. Metrics represent properties of components or
properties of connections between components. To use a
metric in objective functions, the synthesizer must be able to
obtain the represented property from the support infrastruc-
ture. For example, our prototype support infrastructure pro-



Figure 6. A video conferencing recipe

Data structure
LatencyM Represent the network latency between two components.
BandwidthM Represent the available bandwidth between two components.
Function Represent an objective function; contains a Term.
Term Contain a metric or a floating point number; also provides

member functions listed on the right for appending other in-
stances of Term to “this” instance.

Function (member functions of Term)
add(t) Add t (an instance of Term) to “this” instance.
subtract(t) Subtract t from this instance.
multiplyBy(t) Multiply this instance by t.
divideBy(t) Divide this instance by t.
pow(t) Raise this instance to the t-th power.

Figure 7. Objective function API

vides network latency information, so the synthesizer can
allow “latency” to be used in objective functions. Currently,
we define two metrics, LatencyM and BandwidthM, for
use in objective functions. Other important metrics such as
CPU speed, memory size, and cost can be added by ex-
tending the support infrastructure to provide information
on these properties and extending the synthesizer to accept
these metrics in objective functions.

Given a set of metrics, we define the data structures and
functions shown in Figure 7 for constructing objective func-
tions. Note that since our prototype uses the Java program-
ming language, all the data structures are defined as classes.
All functions listed are member functions of the Term
class, e.g., if A and B are both instances of Term and repre-
sent a and b, respectively, then after calling A.add(B), A
represents (a+b). To summarize, this interface can be used
to construct a tree-like data structure representing the objec-
tive function. This tree can then be traversed to evaluate the
function. This API is fairly general and allows a developer
to construct non-trivial objective functions in recipes.

As an example, the video conferencing developer’s ob-
jective function (Figure 3) is a weighted sum of several la-
tencies in the abstract configuration. The shaded lines in the
video conferencing recipe in Figure 6 show how this objec-
tive function is constructed using the above API. On the left
hand side of the figure, we illustrate which part of the objec-
tive function each segment of the recipe constructs. These
partial objectives are added together in obj, which is finally



Figure 8. A video streaming recipe

Figure 9. An interactive search service recipe

used to construct the function objfunc.

4.4. Implementation
We have implemented the synthesizer, including the in-

terpreter and facility modules and the interface, in Java. The
service recipes are also written in Java and use the classes
and interface provided by the facility module. The inter-
preter module dynamically loads a compiled recipe and in-
vokes an entry function. The facility module accesses the
support infrastructure to carry out actual operations. We
also implemented a working self-configuring video confer-
encing system as depicted in Figure 3.

For the support infrastructure, we use the Global Net-
work Positioning (GNP) [17] approach to compute the co-
ordinates of network nodes, which are used to estimate the
network latencies between nodes to support the LatencyM
metric. Note that the BandwidthMmetric is not supported
yet since we have not integrated a bandwidth measure-

ment infrastructure. We also designed and implemented the
Network-Sensitive Service Discovery (NSSD) [11] infras-
tructure that provides, in addition to traditional service dis-
covery, the capability to return the best m candidates given
a local optimization criterion for a component.

4.5. Expressiveness
To evaluate the expressiveness of the recipe representa-

tion, we apply the recipe representation to the other two
services in Section 2 in addition to video conferencing. Fig-
ure 8 shows a recipe for the video streaming service (Fig-
ure 1), and Figure 9 is a recipe for the interactive search
service (Figure 2). The video streaming recipe constructs
different abstract solutions depending on whether the user
is requesting MPEG-2 or MPEG-4 video. The user is repre-
sented by the physical component client extracted from
the user request. The objective function in Figure 1 is easily
constructed using the objective function API.



In the interactive search service recipe, client (the
user) and storageServers (the storage servers) are
fixed physical components extracted from the user request.
For each server, if it does not have sufficient computation
resources, the recipe adds a computation proxy and its “con-
tribution” to the global objective in Figure 2. In these ex-
amples, the recipe representation allows us to express the
service-specific knowledge easily and flexibly.

Of course, developers building the same service may de-
sign different recipes. For example, instead of the recipe
in Figure 8, a developer of a video streaming service may
come up with the simpler recipe in Figure 10 that constructs
an objective function involving only local optimization. Us-
ing this “local” recipe, the synthesizer may not produce
the globally optimal configuration, but the synthesizer will
spend significantly less time in configuring the service.

To see the effect of the different video streaming recipes,
we perform a set of simple simulations. We obtain the
GNP coordinates of 869 Internet nodes from the GNP
project [17], so the latencies between the nodes are realistic.
We randomly select 600 nodes to represent clients, servers,
and transcoders (200 each). For each client, we find the best
pair of server and transcoder using either the “global” recipe
or the “local” recipe. This is repeated 20 times for a total
of 4000 scenarios. We compute the resource consumption
(i.e., the global objective) of the resulting configuration in
each scenario and also measure the time it takes to find the
configuration. The average resource consumption is 90.79
for global and 203.41 for local. The time measurements
(total of 4000 scenarios) are 158.20 seconds for global and
2.05 seconds for local. This experiment clearly shows the
trade-off between optimality and optimization cost in the
two recipe designs. Therefore, developers can write differ-
ent recipes according to their service-specific requirements.

5. Solving the physical mapping problem
After constructing the abstract configuration conf and

the objective function objfunc, the recipe execution is
complete. Given these results, the synthesizer then needs to
solve the physical mapping problem, i.e., for each abstract
component (e.g., VGW), the synthesizer needs to find the
candidates (e.g., machines running the gateway software)
through a service discovery infrastructure and then select
the best one such that the objective function is optimized.
Let us first discuss the complexity of such problems and al-
gorithms for solving them.

5.1. Complexity and algorithms

In general, the synthesizer cannot simply select each
component independently. For example, if the objective
function includes a single metric M(c1,c2) (c1 and c2 are
abstract components with n candidates each), the selection
of c1 depends on that of c2, i.e., the synthesizer needs to se-

AbsConf conf = new AbsConf();
AbsComp vserver = conf.addComp("MPEG2VideoServer");

if (client.getProperty("VideoIn").equals("MPEG2")) {
conf.addConn(vserver, client);

} else {
AbsComp transcoder = conf.addComp("Transcoder");
conf.addConn(vserver, transcoder);
conf.addConn(transcoder, client);

}
Term obj = new Term(new LatencyM(vserver, client));
Function objfunc = new Function(obj);

Figure 10. A simpler video streaming recipe

lect them together (n2 possible combinations) to find the op-
timal selection. Furthermore, this dependency is transitive,
e.g., if the objective is M1(c1,c2)+M2(c2,c3), then all three
are mutually dependent. In addition, some physical map-
ping problems involve semi-dependent components, e.g., in
M1(c1,c2)+ M2(c2), c2 is semi-dependent (independent in
the second term but depends on c1 in the first term). Simi-
larly, VGW and HHP in Figure 3 are both semi-dependent.

If some or all components are mutually dependent, phys-
ical mapping is a global optimization problem with a worst-
case problem size nm where m is the number of abstract
components. If every abstract component is independent,
e.g., if objective is M1(c1)+M2(c2)+ . . .+Mm(cm), phys-
ical mapping becomes a series of local optimization prob-
lems with a total problem size mn.

Previously, researchers have proposed many optimiza-
tion techniques for this type of optimization problems. For
example, a dynamic programming algorithm is used in
CANS [6] to map components to nodes along a selected
route to optimize the overall throughput. Choi et al. uses
a shortest-path algorithm on a transformed network graph
to select intermediate processing sites between two end
points [1]. Gu and Nahrstedt uses a shortest-path algorithm
to find a service path that minimizes the resource usage [9].
The Matchmaking framework [21] maps a computation task
to an appropriate resource that optimizes user-specified cri-
teria. Liu et al. [15] and Raman et al. [22] extend Match-
making to support mapping a task to multiple resources
and to support resource co-allocation, respectively, and they
propose a number of heuristic algorithms to solve the map-
ping problem. Each of these studies addresses a subset or a
particular form of the mapping problems. In contrast, since
in our approach a developer can specify a broad range of
objective functions, the synthesizer must be able to solve a
broader range of mapping problems.

Currently, we have implemented the following more
general optimization algorithms in our prototype.
• Exhaustive search: This algorithm always yields the ac-
tual optimal configuration, but the optimization cost grows
rapidly with the problem size.
• Sim-anneal(R): The simulated annealing heuristic is
based on the physical process of “annealing” [10]. We use
the temperature reduction ratio R as a parameter to control
the cost/optimality trade-off.
• Hybrid(m): This heuristic is for problems with semi-



dependent components, e.g., HHP and VGW in video con-
ferencing. The synthesizer reduces the problem size by
choosing m “local candidates” for each semi-dependent
component according to its “independent metric”, and
global optimization is performed on the reduced search
space. Preliminary evaluation results for this heuristic are
presented in [11].
• HybridSA(m): This is the same as Hybrid(m) except that
the final global optimization is performed using simulated
annealing. The temperature reduction ratio increases with
m to achieve better optimality (at higher costs).

Note that specialized algorithms such as those developed
in previous studies can also be implemented to handle spe-
cial cases more efficiently.

5.2. Selecting the best algorithm
The algorithms discussed above are suitable under dif-

ferent circumstances. Therefore, for each physical map-
ping problem, the most appropriate algorithm needs to be
selected. However, developers may not be optimization ex-
perts and may not know the properties of different algo-
rithms well enough to select the best algorithm. Therefore,
we propose that the synthesizer should be able to automat-
ically choose the best optimization technique when solving
a physical mapping problem. Next, we present a high-level
design for automatic algorithm selection. We have not yet
implemented this design in our prototype.

The best choice of optimization technique depends on
two major factors. The first is the properties of the problem
itself, e.g., when the problem size is small, an expensive
algorithm can be used to achieve better optimality. Sim-
ilarly, specialized algorithms can be used for problems of
particular forms, e.g., path-based or having semi-dependent
components. These properties are not service-specific and
can be analyzed by the synthesizer automatically to choose
an algorithm. For example, using the video conferencing
recipe, the synthesizer generates an abstract configuration
and an objective function. By looking at the number of
candidates for each component, the synthesizer can deter-
mine the problem size and estimate the feasibility of using
an expensive algorithm such as exhaustive search. In ad-
dition, the synthesizer can also analyze the objective func-
tion and discover that the mapping problem involves semi-
dependent components. Therefore, special heuristic algo-
rithms for such problems can be used.

The second factor is the desired trade-off between the
optimality of the resulting configuration and the cost of op-
timization. The desired trade-off for each service is service-
specific and is determined by the developer, e.g., some de-
velopers have a maximum optimization cost constraint and
do not require a near-optimal configuration, while others
are willing to spend more resources on optimization and
have a stricter optimality requirement. However, as dis-
cussed above, developers may not know which algorithm

can achieve the desired trade-off.
To consider a developer’s service-specific trade-off when

choosing an algorithm, the synthesizer can provide an inter-
face for developers to specify in their recipes the desired
cost/optimality trade-off. A simple interface for this pur-
pose has the following two functions:

setAlgCostConstraint(CostSpec maxCost);
setAlgOptimalityConstraint(OptSpec minOptimality);

Using this interface, developers can specify two con-
straints in their recipes: the maximum optimization cost
and the minimum optimality of the resulting configuration.
Currently, we are refining this interface definition based on
preliminary evaluation results and implementing this capa-
bility in the synthesizer. For example, one simple approach
is to define “regions” of cost and optimality, e.g., “high” and
“low” for both CostSpec and OptSpec. A more precise
specification will require a definition that captures cost and
optimality quantitatively.

Given these two constraints specified by the developer,
the synthesizer needs to select an algorithm that satisfies
the constraints for each mapping problem. Therefore, the
synthesizer needs to know the relation between the cost and
optimality properties of the various algorithms. Currently,
we have not yet implemented the automatic algorithm se-
lection. One possible approach is that the synthesizer can
“learn” from its experiences by, for example, periodically
using an expensive algorithm to sample the optimality and
keeping a history of the cost/optimality relation to derive a
guideline for algorithm selection. Another possibility is that
through measurement or analysis, we can “pre-compute”
the cost/optimality relation for the algorithms under com-
mon forms of the mapping problem and then embed this
knowledge in the synthesizer as the selection guideline.

More specifically, for example, we can pre-compute a
“table” of cost and optimality of each algorithm under dif-
ferent problem sizes. When the synthesizer needs to solve
a mapping problem, the following procedure can be used
to select the best algorithm. The synthesizer first analyzes
the problem to determine what algorithms are eligible, and
then it determines the problem size and looks up the table
to retrieve the cost and optimality properties of the candi-
date algorithms under the particular problem size. Finally,
the synthesizer examines the cost and optimality constraints
specified by the developer to select the best algorithm.

5.3. Using pre-computed data

As an example, we simulate the video conferencing sce-
nario in Figure 3 and look at how pre-computed cost and
optimality data can be used by the synthesizer to select an
algorithm. The problem size n in our simulations ranges
from 5 to 200 (each of VGW, HHP, and ESMP has n can-
didates). We generate 200 requests (5 participants each) in
10 different candidate distributions. Similar to the simula-



(a) Optimality of resulting configurations (b) Optimization cost
Figure 11. Optimization for small-scale problems

(a) Optimality of resulting configurations (b) Optimization cost
Figure 12. Optimization for larger-scale problems

tions earlier, the candidates and participants are randomly
selected from the set of 869 nodes with GNP coordinates.

For each request, the synthesizer executes the recipe
(Figure 6) and uses the implemented algorithms to find the
optimal configuration. We compute the average relative op-
timality (RO) of each algorithm, e.g., if an algorithm has RO
1.5, on average the generated configuration is 50% worse
than the actual optimum. We also measure the average opti-
mization time per request to represent the optimization cost.
Given that the optimization time is measured using our un-
optimized Java prototype running on an average desktop
machine (Pentium III 933MHz CPU, Red Hat Linux 7.1,
and J2SE 1.4.2), the measurements should only be used
for comparing different techniques in our simulations. We
expect to see much better performance using an optimized
C/C++ implementation in a production environment.

Figure 11(a) shows the RO of different algorithms for n
between 5 and 15, and Figure 11(b) shows the optimization
cost. Exhaustive search and Hybrid offer good optimality,
but their costs increase rapidly with n (O(n5) for exhaus-
tive; O(m2n3) for Hybrid). Simulated annealing (SA) and

HybridSA have almost constant costs, but their optimality
deteriorates faster than Hybrid.

For n between 25 and 200, it is no longer feasible to run
exhaustive search and Hybrid, so we cannot normalize all
results to the exhaustive search result. Therefore, the RO of
each algorithm for each request is computed by normaliz-
ing to the best-performing algorithm for that request. Fig-
ure 12(a) shows the average RO computed this way, and
Figure 12(b) shows the optimization cost. HybridSA gen-
erally performs better than SA, and the costs of both in-
crease slowly with n (with SA growing faster due to larger
search spaces). Note the fact that the curves become flat for
n between 100 and 200 only means that all algorithms de-
teriorate at roughly the same rate since we normalize to the
best-performing algorithm.

These results can be used as guidelines for the syn-
thesizer to select the appropriate algorithm for each in-
stance of this mapping problem based on both the specified
cost/optimality trade-off and the properties of the problem.
For example, assume that for a given request, the resulting
physical mapping problem size is small (n = 10), the cost



constraint is 100, and the optimality constraint is 1.01 (i.e.,
at most 1% worse than actual optimum). The synthesizer
can look at the results for n = 10 and find that only the ex-
haustive algorithm satisfies both constraints. Similarly, if
the problem size is large (n = 100), cost constraint is 0.75,
and optimality constraint is 1.3, then the synthesizer will
select HybridSA(1).

To summarize, by providing an interface for developers
to specify their desired cost/optimality trade-off, our ap-
proach allows developers to customize algorithm selection
without knowing the details of the algorithms.

6. Conclusion
We presented a general architecture for service devel-

opers to build self-configuring services that can use dis-
tributed components to dynamically compose an optimal
service configuration according to particular user require-
ments and system characteristics. We design a recipe rep-
resentation that can be used by developers to easily capture
their service-specific knowledge, and we develop a synthe-
sizer that performs dynamic service composition automat-
ically according to the knowledge in a recipe. We apply
this architecture to three different services to demonstrate
its flexibility and simplicity. Finally, based on simulation
results, we derive guidelines for the synthesizer to select
an appropriate optimization algorithm according to a devel-
oper’s service-specific trade-off between optimality of com-
ponent selection and optimization cost.

References

[1] S. Choi, J. Turner, and T. Wolf. Configuring Sessions in Pro-
grammable Networks. In Proceedings of IEEE INFOCOM
2001, Apr. 2001.

[2] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

[3] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A Resource Management
Architecture for Metacomputing Systems. IPPS/SPDP ’98
Workshop on Job Scheduling Strategies for Parallel Process-
ing, 1998.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer Applications,
11(2):115–128, 1997.

[5] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. IEEE Computer,
35(6), June 2002.

[6] X. Fu, W. Shia, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services Infrastructure. In
Proceedings of the Third USENIX Symposium on Internet
Technologies and Systems (USITS ’01), Mar. 2001.

[7] A. G. Ganek and T. A. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5–18, 2003.

[8] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,

A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao. The
Ninja Architecture for Robust Internet-Scale Systems and
Services. IEEE Computer Networks, Special Issue on Per-
vasive Computing, 35(4), Mar. 2001.

[9] X. Gu and K. Nahrstedt. A Scalable QoS-Aware Service Ag-
gregation Model for Peer-to-Peer Computing Grids. In The
11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), July 2002.
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