
Using Passive Traces of Application Traffic in a Network Monitoring System

Marcia Zangrilli and Bruce B. Lowekamp∗

Computer Science Department
College of William and Mary

Williamsburg, VA 23187-8795
{mazang,lowekamp}@cs.wm.edu

Abstract

Adaptive grid applications require up-to-date network
resource measurements and predictions to help steer their
adaptation to meet performance goals. To this end, we are
interested in monitoring the available bandwidth of the un-
derlying networks in the most accurate and least obtrusive
way. Bandwidth is either measured by actively injecting
data probes into the network or by passively monitoring ex-
isting traffic, but there is a definite trade-off between the ac-
tive approach, which is invasive, and the passive approach,
which is rendered ineffective during periods of network idle-
ness. We are developing the Wren bandwidth monitoring
tool, which uses packet traces of existing application traffic
to measure available bandwidth. In this paper, we demon-
strate that the principles supporting active bandwidth tools
can be applied to passive traces of the LAN and WAN traffic
generated by high-performance grid applications. We use
our results to form a preliminary characterization of the ap-
plication traffic required by available bandwidth techniques
to produce effective measurements. Our results indicate that
a low overhead, passive monitoring system supplemented
with active measurements can be built to obtain a complete
picture of the network’s performance.

1 Introduction

Adaptive grid applications require timely and accurate
information about the available computational and network
resources in their environment. To accurately monitor
the network resource availability, adaptive applications can
rely on techniques that either actively or passively measure
available bandwidth. Techniques that actively inject traffic

∗This research was supported in part by the National Science Founda-
tion under award ACI-0203974. This work was also performed in part us-
ing computational facilities at the College of William and Mary which were
enabled by grants from Sun Microsystems, the National Science Founda-
tion, and Virginia’s Commonwealth Technology Research Fund.

into the network are often very accurate, but may adversely
affect the performance of other applications on the network.
Although the passive approach avoids the problem of con-
tention by passively observing and collecting network char-
acteristics, it is limited to periods of time when there is traf-
fic on the network between the hosts of interest. We want
to develop a new approach to network monitoring that com-
bines elements of passive and active techniques to offer ac-
curate, timely bandwidth measurements while limiting the
invasiveness of probes.

The Wren system we are developing will use a hybrid
monitoring approach to passively trace existing application
traffic and actively inject traffic when necessary to main-
tain a continuous flow of bandwidth measurements. These
measurements can be used by the application to make im-
mediate runtime decisions, and they can also be stored by a
central monitoring system for use in the future or by other
applications. In order to implement this hybrid system,
we need to monitor existing application traffic, calculate
bandwidth based on the information collected, and detect
when there is insufficient traffic so we can then inject active
probes. This paper presents the passive component of this
system and evaluates its ability to use packet traces of real
application traffic to determine the available bandwidth on
a network.

We set two primary requirements for our implementa-
tion.

• No modification to the application code or the network
infrastructure may be required. Code modification is
one of the largest hurdles to grid application develop-
ment. Our implementation should be as transparent to
the user as possible.

• Application performance must not suffer. The moni-
toring software should not compete with the applica-
tion for network or CPU resources.

Based on these requirements, we have developed a
kernel-level packet trace facility, as an extension to the

Web100 kernel [11], to provide passive monitoring services.
There are several benefits of implementing our facility at the
kernel-level:

• Traffic can be captured without modifying the applica-
tion.

• The amount of additional overhead can be minimized.

• Packets can be accurately timestamped to nanosecond
precision.

• Kernel-level protocol information, such as TCP con-
gestion window size and sequence numbers, can be
recorded.

To calculate available bandwidth, we must apply tech-
niques designed for use with active probes to our passive
traces. Most active bandwidth techniques rely on adjust-
ments to the amount and/or rate of data being sent across the
network. Our primary challenge with using passive packet
traces is that we have no control over the traffic pattern.

This paper provides an overview of the Wren packet
trace facility and describes how to apply techniques com-
monly used to actively measure bandwidth to passive traces
of application traffic, a task complicated because we have
no control over the application traffic pattern. We have eval-
uated our approach on LAN- and WAN-based distributed
applications and present the results of applying our analy-
sis to traffic captured from these applications. The principle
contributions of this paper are

• a system that captures packet traces unobtrusively,

• new algorithms for applying the principles of active
probing techniques to passive traces,

• characterization of the network traffic an application
must produce for our techniques to provide valid avail-
able bandwidth measurements, and

• demonstration that both bulk transfer and bursty BSP-
style communication produce packet traces that can be
used to measure available bandwidth.

The remainder of this paper will describe the status of
the Wren packet trace facility. We will first review related
work on monitoring systems. Section 3 will discuss the
range of traffic patterns generated by grid applications. In
Section 4, we describe our packet trace implementation and
the bandwidth techniques implemented in the user-level. In
Section 5, we present the results of using Wren to monitor
available bandwidth.

2 Monitoring Systems

Packet trace tools, like tcpdump, monitor network traffic
to verify the operation of network protocols and to charac-
terize application traffic patterns. Tcpdump uses the libpcap
packet capture interface to initiate tracing and process the
packet trace into a standard representation. In Linux sys-
tems, libpcap interacts with the Linux Socket Filter (LSF),
a variation of BSD Packet Filter (BPF) [14], which is com-
posed of a network tap that sits at the link device layer and
collects packets specified by user-defined filter rules. The
use of the LSF filtering mechanism improves performance
because unwanted packets are filtered in the kernel instead
of being copied into the user-level for processing by libp-
cap. A drawback of using LSF to trace packets is the need
for applications to be reading the socket to collect the pack-
ets as they arrive. In contrast, an application that uses the
Wren system can read data from a kernel buffer at any point
after the trace is completed. More importantly, it may be
difficult for system that uses LSF to coordinate traces of the
same range of packets on two machines. We have designed
Wren with a triggering mechanism that specifies the same
range of packets will be monitored on both machines.

Shared Passive Network Performance Discovery
(SPAND) [20] uses information passively collected from
several hosts on a network to measure network conditions.
Performance data is collected from client applications
and packet capture hosts. The performance reports sent
by the client applications are based on application-level
observations and may lack the detail to provide accurate
estimates of available bandwidth. Packet capture hosts,
which use BPF to observe all traffic to and from a group
of hosts, are the primary means of collecting information.
These hosts are not at the end-points of the path, and
therefore, must use heuristics to infer end-to-end properties
such as achievable bandwidth. The packet capture host
is responsible for processing the data before sending the
performance report to the server. In our Wren system,
the host collecting the kernel-level packet trace can send
the data to another machine where all the processing will
occur. More importantly, Wren uses a two-sided approach
to monitoring traffic at the both end hosts of path, allowing
for more accurate measurements of end-to-end properties.

SPAND maintains a central repository of measurements
at a performance server, which can be queried by any ap-
plication in the system. SPAND measurements are shared
and passive, features that we have incorporated into the de-
sign of Wren. In SPAND, there is an emphasis on the per-
formance the application can obtain rather than the total
availability of network resources. However, SPAND does
provide an achievable bandwidth metric, which is similar
to the bulk transfer capacity metric [12] discussed in Sec-
tion 4.2.1. Our Wren implementation has the added fea-

Table 1. Information collected during Wren packet trace of TCP traffic.
Incoming packets Outgoing packets

timestamp seq number ack number TCP cwnd timestamp seq number ack number data size

ture of being able to apply several available bandwidth tech-
niques to the same packet trace.

Web100 [11] is designed to monitor, diagnose, and tune
TCP connections. Web100 comprises a kernel-level compo-
nent, which is responsible for exposing the characteristics
of the TCP connection, and a user-level component, which
retrieves and graphically displays the connection informa-
tion. The Web100 tool instruments the network stack of the
2.4 series of Linux kernels to capture an instantaneous view
of the TCP connection internals and exports that informa-
tion to the user-level through an interface in the /proc file
system. The Web100 tool has an autotuning functionality
and also provides a mechanism for hand-tuning kernel vari-
ables. The appeal of the Web100 tool is the ability to track
the current state of variables in TCP connections and to tune
buffers accordingly in real-time at the user-level.

We are developing the Wren bandwidth monitoring tool
as an extension to the Web100 kernel so that a single ker-
nel can provide the variety of network services required
for high-performance networking. We chose to implement
the kernel-level portion of the Wren bandwidth monitoring
tool as an additional feature to Web100 because monitoring
available bandwidth and buffer tuning are both used in the
same situations to improve application performance.

3 Traffic Patterns

Grid applications can generate traffic patterns composed
of many long transfers, many short transfers, or some com-
bination of both. At one end of the spectrum are bulk data
transfer applications, which move large amounts of data be-
tween two points and tax the communication stack by con-
tinuously sending data. Many grid applications have com-
munication phases that behave similarly to bulk data trans-
fers, such as the initial distribution of work among proces-
sors or the migration of large work units during load bal-
ancing.

At the other end of the spectrum of grid applica-
tions are bulk synchronous parallel (BSP) applications with
compute-communicate phases and sporadic traffic patterns.
Common to these applications is the need to periodically
synchronize or communicate information with other pro-
cessors. For example, in a mesh generation application [2],
processors may need to be notified about inserted points or
other refinements made on the boundaries shared by the pro-
cessors.

In our evaluation of Wren, we use a bulk data transfer

and a distributed eigensolver, so we cover a representative
spectrum of the traffic produced by high-performance grid
applications.

4 Wren Bandwidth Monitoring Tool

The Wren bandwidth monitoring tool is split into a
kernel-level packet trace facility and a user-level trace an-
alyzer. The kernel-level packet trace facility is responsi-
ble for gathering information associated with incoming and
outgoing packets. In the user-level, once the traces are ac-
quired any or all available bandwidth techniques can be ap-
plied. The ability to apply several bandwidth techniques
to the same packet trace allows us to determine the rela-
tionship and effectiveness of the techniques. The available
bandwidth measurements can be given directly to the appli-
cation that generated the traffic or stored by a monitoring
system for use in the future or by other applications.

In the remainder of this section, we review the kernel-
level packet trace facility and discuss the user-level trace
analyzer, specifying how we passively implemented four
bandwidth techniques. We finish this section with a con-
sideration of the security of the system.

4.1 Wren Packet Trace Facility

Wren extends the functionality of the Web100 kernel to
incorporate kernel-level packet traces. Because Web100 is
a secure, well-accepted system, our Wren packet trace fa-
cility should be acceptable to system administrators. In our
implementation, we added a buffer to the Web100 kernel to
collect characteristics from incoming and outgoing packets.
Table 1 shows the information collected during a trace of
TCP traffic. In the UDP and TCP code we timestamp the
packets using the CPU clock cycle counter and record the
timestamps and TCP congestion window size in our buffer.
Access to this buffer is through two system calls: one starts
the tracing and specifies the connection to trace and the
other retrieves the trace from the kernel. The Wren architec-
ture is designed so that user-level components do not need
to be reading from the packet trace facility all of the time.
Wren can capture full traces of small bursts of traffic or pe-
riodically capture smaller portions of continuous traffic and
use those to measure available bandwidth. We have previ-
ously analyzed the efficiency of our design [23] and found
that Wren adds little overhead to the kernel.

The precise timestamp and cwnd values are only possi-
ble through kernel-level instrumentation. Another key de-

sign feature of the Wren packet trace facility is the ability
to coordinate measurements between machines. In our im-
plementation, one machine triggers the other machine by
setting a flag in the headers of outgoing packets to start trac-
ing the same range of packets. The other machine traces all
packets with the header flag set, which prevents lost pack-
ets from adversely affecting the coordinated tracing. This
packet coordination ensures that the buffers at each end of
the connection store information about the same packets re-
gardless of the bandwidth-delay product of the particular
connection.

4.2 Wren Trace Analyzer

The user-level component of the Wren bandwidth mon-
itoring tool is responsible for initiating the tracing, collect-
ing the trace from the kernel, and processing the data. We
apply the bandwidth techniques at the application level to
avoid slowing the performance of the operating system. The
overhead imposed by the user-level code is minimal, and the
data can be transferred to another machine for processing,
if necessary.

4.2.1 BTC

The Bulk Transfer Capacity (BTC) [12] metric specifies the
data rate that a single congestion-aware transport connec-
tion can obtain. Tools, such as SPAND [20] and NWS [22],
use the BTC metric to measure achievable bandwidth. In
Wren, we observe the total number of bytes sent the packet
trace and divide the total number of bytes sent by the time
elapsed to produce a measure of the actual throughput of the
application, which is the same as the BTC when the appli-
cation is sending at full blast.

4.2.2 TCP window

The TCP window technique uses the TCP protocol’s con-
gestion window size variable to measure bandwidth. TCP
tracks the congestion in the network by maintaining a con-
gestion window size variable (cwnd), which specifies how
much data can be sent per round trip time. The TCP proto-
col slowly probes for congestion of the network by increas-
ing the congestion window (and thus the sending rate) until
loss is detected and then the congestion window size is re-
duced. Because cwnd and MSS determine the rate at which
TCP sends data, dividing the product of the cwnd and MSS
by the round trip time (RTT) yields a measure of achievable
throughput [13]. The Wren packet trace facility records the
cwnd variable when packets arrive in the kernel so that the
TCP window technique can be applied.

4.2.3 Packet Pair

Packet dispersion techniques can be used to measure the
capacity [1, 3, 9] or the available bandwidth [1, 5, 8, 16, 21]
of a network path. The premise of packet dispersion tech-
niques is that if a train of packets is sent at a rate faster than
the bottleneck bandwidth, the train will leave the bottleneck
link at a rate equal to the bottleneck bandwidth. The rate
the packets are traveling is inversely related to the spacing
or dispersion between the packets.

Tools such as cprobe [1] use packet dispersion tech-
niques to calculate bandwidth by dividing the size of the
packets by the dispersion of the train as measured on the
receiving host. However, this approach measures a metric
called the asymptotic dispersion rate [3, 9]. More recently,
spruce, IGI, and Delphi [18] have used dispersion of packet
pairs/train to determine the utilization of the bottleneck link
and subtract the utilization from the capacity of the bottle-
neck link to calculate the available bandwidth.

The success of a packet dispersion technique is depen-
dent on the initial rate of the packets being greater than
the bottleneck bandwidth. In TCP bulk data transfer traf-
fic traces, we have observed that packets are often sent out
from the OS as a stream of tightly spaced pairs. In our
implementation, we analyze the dispersion of these tightly
spaced pairs as they arrive at the receiving host. We group
packet pairs into trains, average the dispersion of the pairs,
and calculate the available bandwidth. We use this approach
because:

• The inter-packet spacing is inversely proportional to
the sending rate, so the smaller the spacing the faster
the rate. This is important for a technique that relies on
the sending rate being larger than the bottleneck band-
width.

• Averaging dispersions of a train helps minimize affects
of artifacts in measurements.

We use filtering to eliminate packet pairs that violate as-
sumptions of the packet dispersion technique. Specifically,
we remove pairs where the initial packet spacing is larger
than the final dispersion because the shrinking of space be-
tween packets indicates the packet rate increased.

We recognize that there is still uncertainty in the com-
munity about the reliability of measuring available band-
width using packet dispersion techniques [7, 17]. This is es-
pecially true in high bandwidth-delay environments where
interrupt coalescing (IC) can cause timestamps to be in-
creased from when packets actually arrive at the NIC. Re-
cently, techniques for detecting IC and removing erroneous
measurements have been described [17]. We hope Wren
can address these issues by detecting IC or by incorpo-
rating NIC timestamping into the packet trace facility and
by implementing emerging techniques that rely on other

packet spacing, such as exponential, to use on our traces
of application-generated trains [4, 19].

4.2.4 SLoPS

Self-Loading Periodic Streams (SLoPS), which is used in
pathload [6], is based on the principle that if the rate of a pe-
riodic packet stream is larger than the available bandwidth,
the one-way delays of this stream will have an increasing
trend. If the one-way delays of the stream do not have an
increasing trend, the rate of the stream is less than the avail-
able bandwidth.

In pathload, SLoPS is an iterative algorithm that requires
cooperation of the sender and the receiver hosts. For one it-
eration, pathload sends out several UDP packets at a fixed
transmission rate, determines if the transmission rate is
larger or smaller than the available bandwidth, and then ad-
justs the transmission rate for the next iteration. After sev-
eral iterations, Pathload’s algorithm converges to an avail-
able bandwidth range.

In our implementation of SLoPS, we have no control
over the initial sending rate of the streams and therefore can-
not guarantee that the traffic we are tracing will be sufficient
to allow the algorithm to converge to a bandwidth range.
However, we hypothesize that TCP traffic can be used to
find a maximum limit on the range of available bandwidth
because the TCP protocol varies the sending rates of pack-
ets according to the congestion window size. In essence, the
TCP protocol is doing the same thing that pathload is trying
to accomplish: sending a stream of packets that will induce
congestion and identifying the rate at which congestion oc-
curs.

In our implementation of SLoPS, we use the timestamps
of packets to calculate the one-way delays and the initial
sending rate of the stream of packets. We group 10-50 pack-
ets that had the same congestion window size when sent into
a stream and identify the trend in one-way delays of that
stream. Consistent with the pathload implementation, we
group several streams together into a one fleet and for that
fleet try to identify the maximum range value for the avail-
able bandwidth. To test our implementation, we monitored
the UDP traffic generated by the pathload tool. In congested
and uncongested environments, Wren produced the same
measurements as pathload, thus validating the correctness
of our implementation. Our SLoPS implementation per-
forms the same convergence tests as pathload and reports
results only when TCP naturally produces a sequence of
fleets that determines the current available bandwidth.

4.3 Security

We recognize that the interface to packet traces that the
Wren bandwidth monitoring tool provides may be consid-
ered a security issue. In the current implementation of our

Wren bandwidth monitoring tool, there is no restriction on
which users can capture traces. The danger here is that any
user has access to and can trace any other user’s application
traffic. However, the amount of information the user can
obtain is limited to sequence and acknowledgment numbers
and does not include the data segment of the packets. This
is not much more information than a user could obtain from
the netstat program. Were we to restrict access, deploy-
ing a grid-wide monitoring system would require either root
access or restrict the monitoring to a single user’s applica-
tions. But in a production release, we could add the ability
to check permissions for access.

5 Results

We have tested the Wren bandwidth monitoring tool by
running experiments on LANs and WANs using 100Mb and
Gb interfaces. Our results demonstrate that the Wren band-
width monitoring tool can measure bandwidth using passive
traces of application traffic collected on congested and un-
congested paths. We use Wren to investigate how our pas-
sive bandwidth techniques relate to one another and eval-
uate each technique in an effort to understand what traffic
conditions are necessary for each technique to produce use-
ful measurements.

5.1 Uncongested LAN

We use the Wren bandwidth monitoring tool to collect
and analyze traces of iperf traffic between two 2.8 GHz Pen-
tium 4s using 100 Mb and 1 Gb Ethernet interfaces. In this
experiment the MTU is set at 1500. In Figures 1 and 2
the packet pair and BTC techniques obtain the same con-
sistent measurement of the bandwidth while the measure-
ments produced by the TCP window technique occasionally
dip, reflecting the behavior of the congestion window size
being reduced. However, the TCP window technique mea-
surements are quantitatively similar to the BTC and packet
dispersion values at the other times. The values obtained
by applying the SLoPS technique are in some cases larger
than the measurements of the other techniques. In these
cases, SLoPS is more likely measuring available bandwidth
while the other techniques are measuring achievable band-
width [10]. In bulk data transfer results shown in Figures
1 and 2, we see that all techniques produce similar band-
width measurements that are consistent with what we might
expect on uncongested 1 Gb and 100Mb LANs.

5.2 WAN

In our WAN experiment, iperf was used to generate traf-
fic from a Pentium 4 machine at the College of William and
Mary across the Network Virginia and Abilene networks to

 40
 50
 60
 70
 80
 90

 100
 110
 120

 10 12 14 16 18 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

BTC
 40
 50
 60
 70
 80
 90

 100
 110
 120

 10 12 14 16 18 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

Packet Pair

 40
 50
 60
 70
 80
 90

 100
 110
 120

 10 12 14 16 18 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

TCP Window
 40
 50
 60
 70
 80
 90

 100
 110
 120

 10 12 14 16 18 20
ba

nd
w

id
th

 (
M

bp
s)

Time (sec)

SLoPS

Figure 1. Techniques applied to iperf traffic monitored on uncongested 1OO Mb LAN.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

BTC
 0

 200
 400
 600
 800

 1000
 1200
 1400

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

Packet Pair

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

TCP Window
 0

 200
 400
 600
 800

 1000
 1200
 1400

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

SLoPS

Figure 2. Techniques applied to iperf traffic monitored on uncongested 1 Gb LAN.

a Digital Unix 4.0 machine at Carnegie Mellon University.
Typical of modern networks, the capacity bottlenecks of this
path are at the endpoints, not the WAN. The bottleneck ca-
pacity of this path is 100 Mb, but the obtainable throughput
on this path typically maxes out around 70 Mb due to the
presence of other traffic on the path.

In Figure 3, the BTC and TCP window techniques il-
lustrate the slow ramp-up and sawtooth patterns associated
with TCP’s AIMD algorithm. This graph indicates that the
BTC and TCP window techniques are measuring through-
put instead of available bandwidth until just before a packet
loss.

Figure 3 also shows that the packet pair technique pro-
duces measurements as soon as back-to-back packets are
issued and that both the packet dispersion technique and
the SLoPS technique produce values that are quantitatively
similar to the other techniques at the height of the ramp-
up period. We expect this behavior from SLoPS because
the technique is configured to report the maximum value
of the available bandwidth range that is computed. The
SLoPS and packet pair techniques provide consistent es-
timates of the available bandwidth, while the other tech-
niques measure the throughput the application is obtaining.
Figure 3 shows that the throughput an application achieves
is equal the available bandwidth when the TCP window is
fully opened.

5.3 WAN Gb

We generated iperf traffic between a dual Pentium III,
800 MHz machine at Vrije Universiteit and an AMD Athlon
2700 MHz machine at Lawrence Berkeley Laboratory, both
equipped with Gb NICs. This Gb WAN path has a high
bandwidth-delay product, which means it will take longer
for the TCP window to open up and for an application to re-
alize its maximum throughput than it would take on a LAN.
In our experiments, it took approximately 5 seconds be-
fore the TCP window opened fully, at which point the BTC
and TCP window techniques were able to measure avail-
able bandwidth. These results verify that our software has
no problems tracing packets at Gb speed.

The packet pair and SLoPS techniques are not applied
to this trace because the packets arriving at the receiver
had a constant spacing, which indicates interrupt coalesc-
ing is occurring. The inability to effectively apply these
techniques is not surprising because of previous results that
indicate NIC-level timestamping or IC detection is neces-
sary for high bandwidth connections [7, 17].

5.4 Traffic Requirements on LAN

In this experiment, we monitor TCP traffic produced by
iperf running between two Pentium 4s on a 100 Mb LAN

Table 2. Number of measurements obtained
by applying packet pair technique to 96 bursts
of traffic sent every .2 seconds.

burst size number of measurements
70 KB 0
75 KB 75
80 KB 84
90 KB 105

100 KB 119
150 KB 173

with 0, 20 and 40 Mb of TCP cross traffic on the link. The
iperf TCP traffic and the TCP cross traffic both traverse the
same link, but different machines generate the traffic.

Figure 4 presents the results of applying the BTC, TCP
window, SLoPS, and the packet pair techniques to the iperf
traces. In each graph, we see distinct bands reflecting the
change in the amount of cross traffic demonstrating that all
of the techniques can detect the changes in available band-
width. This graph also shows that the SLoPS algorithm
may not always converge, but when it does converge the
measurements are correct. All of the techniques produce
bandwidth measurements that reflect the availability of the
bandwidth on the path when reduced by 20 and 40 Mb.

In Figure 4, the BTC and TCP window measurements
have spikes when a congestion event occurs until TCP en-
ters AIMD again, but the packet pair technique is not af-
fected by the congestion event. The important observations
are that the packet pair technique measurements are not af-
fected by the congestion window size, but the other tech-
niques require TCP to be in AIMD.

Our next experiment focused on determining the amount
of smallest amount of data that must be sent for the packet
pair technique to be applied. We are interested in quantify-
ing how many back-to-back packets are required so that the
packet pair technique can measure available bandwidth. We
refer to a group of back-to-back packets as a burst and the
burst size as the total number of bytes in a burst.

For this experiment, we wrote an application, which ran
across a 100 Mb LAN between two Pentium 4s and sent 96
bursts of various sizes at a frequency of .2 seconds. For the
various burst sizes, we look at the number of measurements
produced by applying the packet pair algorithm to traces of
the 96 bursts. The number of measurements obtained will
depend on how many packets are filtered out to ensure that
no assumptions of the packet pair technique were violated.

Table 2 shows the number of bandwidth measurements
we obtained from various burst sizes. While some valid
measurements are obtained using bursts of 75 and 80 KB,
the fact that there are fewer bandwidth measurements than

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

TCP Window
Packet Pair

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

 BTC
 SLoPS

Figure 3. Techniques applied to trace of iperf traffic on a 100Mb WAN between W&M and CMU.

 40

 60

 80

 100

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

BTC
 0 xtraffic

20 xtraffic

40 xtraffic

 40

 60

 80

 100

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

TCP Window
 0 xtraffic

20 xtraffic

40 xtraffic

 40

 60

 80

 100

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

Packet Pair
 0 xtraffic

20 xtraffic

40 xtraffic

 40

 60

 80

 100

 0 5 10 15 20

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

SLoPS 0 xtraffic

20 xtraffic

40 xtraffic

Figure 4. Techniques applied to iperf traces on a 100Mb LAN with 0,20,40 Mb of cross traffic.

number of bursts indicates that the packet pair technique
cannot always be applied to bursts this small. The packet
pair technique is more reliable using bursts larger than 90
KB because these burst sizes ensure that there is is a one-to-
one ratio in terms of burst sent to measurements obtained.
Our results for this connection indicate that the packet pair
technique can only be reliably applied to bursts of applica-
tion traffic that are at least 90 KB.

5.5 Bursty Application Traffic

We performed experiments with an adaptive multigrain
eigenvalue application, which is designed to find the ex-
treme eigenvalues of large, sparse matrices [15]. This solver
is comprised of a projection phase with local computation
and a correction phase with communication within clusters.
The communication is bursty, with several short messages
preceding larger messages. We believe this algorithm has
characteristics similar to a large number of latency-tolerant
high-performance computing applications that may be run
on clusters and grids, and therefore, is an ideal choice to
evaluate the performance of our bandwidth measurement
techniques when running significant, non-trivial applica-
tions with interesting communication patterns.

We ran the eigensolver on a cluster of four Pentium III
Linux machines linked together by 100Mb connections and
monitored traffic between two of the nodes running the
eigensolver. Figure 5 shows the bursty traffic pattern gen-
erated by the eigensolver application. Notice that the appli-
cation only sends at full rate between 6-9 seconds, but the
packet pair technique is able to measure bandwidth effec-
tively throughout the duration of the packet trace.

Some of the bursts sent out during the communication
phase were more than 90 KB, the burst size qualification
for application traffic to be used by the packet pair tech-
nique. In Figure 5, the packet pair bandwidth measurements
demonstrate that our burst size assessment is valid.

6 Conclusion

This paper describes and evaluates the passive compo-
nent of the Wren bandwidth monitoring tool. We have im-
plemented the BTC, packet pair, TCP window, and SLoPS
algorithms to calculate bandwidth and have analyzed the ef-
fectiveness of these techniques on bulk data transfer traffic
and bursty application traffic on 100 Mb LANs, 1 Gb LANs,
and WANs. Our results show that all of the techniques can
identify the presence of competing traffic on a network path
and these techniques often produce quantitatively similar
measurements.

While our tool does not fail to trace application traffic,
the bandwidth techniques can fail to calculate the available

 0
 20
 40
 60
 80

 100
 120

 0 2 4 6 8 10

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Time (seconds)

Packet Pair
App. Throughput

Figure 5. Throughput of an adaptive eigen-
solver measured on a 100 Mb LAN. This ap-
plication has a bursty traffic pattern with a
maximum rate obtained only between 6-9 sec-
onds, but the packet pair technique is able to
provide effective measurements throughout
the duration of the trace.

bandwidth of the path. We presented a preliminary anal-
ysis of the application traffic characteristics needed to ap-
ply the bandwidth techniques. We found that the SLoPS,
BTC, and TCP window techniques are only able to effec-
tively measure available bandwidth when the TCP window
opens up in the AIMD phase. While the packet pair tech-
nique could still be applied applied to more bursty traffic
that never opened the TCP window, this technique did re-
quire a minimum amount of data to be sent in a burst to pro-
vide bandwidth measurements. This analysis is important
because it specifies the minimum amount of traffic an ap-
plication must generate to make passive measurements. In
the future, we will use this information to determine when
active measurements should be started so that the bandwidth
information remains up to date.

We are continuing to investigate how to detect and obtain
valid results when interrupt coalescing occurs. We also plan
to continue with a more rigorous analysis of the limitations
of the bandwidth techniques and how various patterns in
data streams affect the measurement accuracy.

7 Acknowledgments

We thank those who allowed us to use their hosts as plat-
forms for our experiments: Nancy Miller (CMU), Brian
Tierney (LBL), Kees Verstoep, Thilo Kielman and An-
drew Tanenbaum (Vrije Universiteit). Thanks also to Claire
O’Shea for software development.

References

[1] R. L. Carter and M. E. Crovella. Measuring bottleneck link
speed in packet-switched networks. Performance Evalua-
tion, October 1996.

[2] N. Chrisochoides, A. Fedorov, B. Lowekamp, M. Zangrilli,
and C. Lee. A Case Study of Computing on the Grid: Paral-
lel Mesh Generation. In Next Generation Systems Program
Workshop, IPDPS, 2003.

[3] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet
dispersion techniques measure? In INFOCOM01, 2001.

[4] G. He and J. C. Hou. On Exploiting Long Range Depen-
dence of Network Traffic in Measuring Cross Traffic on an
End-to-end Basis. In IEEE Infocom, 2003.

[5] N. Hu and P. Steenkiste. Evaluation and characterization of
available bandwidth techniques. IEEE JSAC Special Issue in
Internet and WWW Measurement, Mapping, and Modeling,
2003.

[6] M. Jain and C. Dovrolis. Pathload: a measurement tool for
end-to-end available bandwidth. In Proceedings of the 3rd
Passive and Active Measurements Workshop, March 2002.

[7] G. Jin and B. Tierney. System capability effects on algo-
rithms for network bandwidth measurement. In IMC, 2003.

[8] G. Kin, G. Yang, B. R. Crowley, and D. A. Agarwal. Net-
work characterization server (NCS). In HPDC11. IEEE, Au-
gust 2001.

[9] K. Lai and M. Baker. Nettimer: A tool for measuring bottle-
neck link bandwidth. In In Proceedings of USENIX Sympo-
sium on Internet Technologies and Systems, 2001.

[10] B. B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones,
T. Kielmann, and M. Swany. Enabling network measure-
ment portability through a hierarchy of characteristics. In
Proceedings of the 4th International Workshop on Grid
Computing (GRID2003), 2003.

[11] M. Mathis. ”Web100” http://www.web100.org, 2000.
[12] M. Mathis and M. Allman. A framework for defining em-

pirical bulk transfer capacity metrics. RFC 3148, 2001.

[13] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic
behavior of the TCP congestion avoidance algorithm. Com-
puter Communications Review, 1997.

[14] S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In USENIX
Winter, 1993.

[15] J. R. McCombs and A. Stathopoulos. Multigrain paral-
lelism for eigenvalue computations on networks of c lusters.
In Proceedings of the Eleventh International Symposium
On High Performance Distributed Computing (HPDC), July
2002.

[16] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-
to-end probing and analysis method for estimating band-
width bottlenecks. In Global Internet Symposium, 2000.

[17] R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt co-
alescence on network measurements. In Passive and Active
Measurements Workshop (PAM), 2004.

[18] V. Ribeiro, M. Coates, R. H. Riedi, S. Sarvotham, B. Hen-
dricks, and R. Baraniuk. Multifractal cross-traffic estima-
tion, 2000.

[19] V. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and
L. Cottrell. pathChirp:Efficient Available Bandwidth Esti-
mation for Network Paths. In Passive and Active Measure-
ment Workshop (PAM), 2003.

[20] M. Stemm, R. Katz, and S. Seshan. A Network Measure-
ment Architecture for Adaptive Applications. In INFO-
COMM, 2000.

[21] J. Strauss, D. Katabi, and F. Kaashoek. A measurement
study of available bandwidth estimation tools. In Internet
Measurement Conference (IMC), 2003.

[22] R. Wolski. Forecasting network performance to support dy-
namic scheduling using the network weather service. In Pro-
ceedings of the 6th High Performance Distributed Comput-
ing Conference (HPDC), 1997.

[23] M. Zangrilli and B. B. Lowekamp. Comparing passive
network monitoring of grid application traffic with active
probes. In Proceedings of the 4th International Workshop
on Grid Computing (GRID2003), 2003.

