
Differential Serialization for Optimized SOAP Performance

Nayef Abu-Ghazaleh, Michael J. Lewis, Madhusudhan Govindaraju
Department of Computer Science, Binghamton University

State University of New York
Binghamton NY 13902�

nayef, mlewis, mgovinda � @cs.binghamton.edu

Abstract

The SOAP protocol has emerged as a Web Service com-
munication standard, providing simplicity, robustness, and
extensibility. SOAP’s relatively poor performance threat-
ens to limit its usefulness, especially for high-performance
scientific applications. The serialization of outgoing mes-
sages, which includes conversion of in-memory data types
to XML-based string format and the packing of this data
into message buffers, is a primary SOAP performance bot-
tleneck. We describe the design and implementation of dif-
ferential serialization, a SOAP optimization technique that
can help bypass the serialization step for messages simi-
lar to those previously sent by a SOAP client or previously
returned by a SOAP-based Web Service. The approach re-
quires no changes to the SOAP protocol. Our implemen-
tation and performance study demonstrate the technique’s
potential, showing a substantial performance improvement
over widely used SOAP toolkits that do not employ the
optimization. We identify several factors that determine
the usefulness and applicability of differential serialization,
present a set of techniques for increasing the situations in
which it can be used, and explore the design space of the
approach.1

Key Words: SOAP, Web Services, Serialization Optimiza-
tion, High Performance, Scientific Computing

1 Introduction

The Web Services model has recently been adopted as
the basic architecture for Grid Systems [10]. Web Ser-
vices provide standards for representing, discovering, and
invoking services in wide area environments. The XML-
based specifications, including the Web Service Descrip-

1This research is supported by NSF Career Award ACI-0133838 and
DOE Grant DE-FG02-02ER25526.

tion Language (WSDL) [9] and SOAP [15], provide ex-
tensibility and transparency. WSDL provides a precise de-
scription of a Web Service interface and of the communi-
cation protocols it supports, and SOAP is the most widely
used communication protocol, facilitating the exchange of
XML-based structured information. SOAP supports one-
way messages, request-response interactions, peer-to-peer
conversation, and RPC.

The characteristics that make SOAP attractive for the
Grid include extensibility, language and platform indepen-
dence, simplicity, robustness, and interoperability. Given
the diverse nature of application requirements running
on the Grid’s heterogeneous computational components,
SOAP is ideally suited to serve as a common standard proto-
col. However, since XML primarily uses ASCII as the rep-
resentation format for data, sending scientifc data via stan-
dard implementations of SOAP can result in a severe per-
formance penalty. It is important to identify and remove the
bottlenecks in SOAP performance for scientific data. In this
paper, we present a SOAP optimization technique that can
result in significant performance improvements over widely
used SOAP toolkits that do not employ the optimization,
including gSOAP [24] and XSOAP [18, 21].

Applications of interest to the HPDC community often
require communication using large arrays of floating point
numbers and complex data types. Earlier work on SOAP
performance identified the most critical bottleneck to be
the conversion between floating point numbers and their
ASCII representations [6]. The conversion routines account
for 90% of the end-to-end message time. This paper in-
troduces bSOAP, which addresses this serialization bottle-
neck. Rather than discarding serialized SOAP messages af-
ter they are sent, clients save the messages so they can be
used as templates for future outcalls. Messages are com-
pletely serialized and saved during the first invocation of
the SOAP call. Subsequent calls that are identical, or that
have the same SOAP message structure, can avoid a signif-
icant percentage of the serialization overhead by requiring
that only the changes to the previously sent message be seri-



alized. We call this technique differential serialization, and
describe several techniques that make it effective, including:

� tracking data changes and overwriting only those val-
ues that have changed since the last send,� expanding the serialized message to accommodate
larger serialized values,� storing the message in chunks and padding them with
whitespace to reduce the cost of expansion, and� overlaying the same memory region with different por-
tions of the same outgoing message to reduce memory
consumption.

We quantify the effectiveness of these techniques with a
performance study that demonstrates that best case perfor-
mance is up to ten times faster, for the case when messages
can be resent in their entirety. We also show that send
times can be reduced by a factor of five when only parts
of the message need to be re-serialized. Our research is
useful in two ways. Applications that repeatedly send simi-
lar messages will achieve significant performance improve-
ment, and SOAP library developers will gain insights into
the cases that make differential serialization most effective.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the SOAP protocol, and identifies and quan-
tifies the serialization bottleneck. Section 3 describes the
design and implementation of our approach. Section 4 con-
tains a detailed performance study. We conclude with re-
lated and future work in Sections 5 and 6, and summarize
our findings in Section 7.

2 Background: The SOAP Protocol

SOAP is a light-weight and extensible message exchange
format. It is not tied to any specific programming language,
platform, or transport mechanism, enabling the exchange
of information across disparate run-time environments. Al-
though HTTP is the most widely used transport layer for
SOAP payload, other protocols such as FTP or SMTP can
also be used. The use of XML and HTTP with the SOAP
protocol makes it well suited to serve as an interoperable
communication protocol on the Grid. It can be supported by
many programming languages [22], including C, C++, Java,
Perl, JavaScript and SmallTalk. SOAP is currently used in
numerous Web Services based Grid toolkits. For example,
the Java-based implementation in the GT3 [1] toolkit uses
the Apache Axis SOAP implementation [23], the OGSA-
C [12] implementation uses the gSOAP [24] toolkit, and
XCAT [13, 19] uses XSOAP [21].

The serialization of SOAP calls can be logically sepa-
rated into the following phases: (1) traversing the data struc-
tures of the invocation parameters; (2) translating the stored
values into ASCII representations as required by the XML

specification; (3) copying the XML representation (includ-
ing tags) into a buffer and (4) sending the buffer over the
network. SOAP toolkits use various design strategies to im-
plement these phases. The routines that convert data types
(especially floats and doubles) to their ASCII formats can be
complex and expensive. The design of the buffering mecha-
nism can affect the number of system calls and cache hits in
each serialization cycle. The choice of HTTP 1.0 or HTTP
1.1 can determine how the buffer is sent over the network.
HTTP 1.1 supports chunking and streaming of messages al-
lowing data structures to be sent over the network as soon
as they are serialized.

In earlier work, we studied the performance of different
stages of the SOAP implementation stack to isolate bottle-
necks when various scientific data types are sent [6, 14].
The techniques for performance enhancement included the
use of schema-specific parsing and trie data structures so
that XML tags are parsed only once. We also studied the
gain in performance due to the use of chunking and stream-
ing. The test results indicated that these techniques affect
only a fraction of the overall cost of a SOAP call. The
most critical factor is the cost of conversion between float-
ing point numbers and their ASCII representations. These
conversion routines account for 90% of end-to-end time for
a SOAP RPC call. For high performance applications, this
bottleneck must be eliminated.

3 Differential Serialization: Design and Im-
plementation

Our approach to removing the serialization bottleneck is to
avoid complete serialization of SOAP messages by storing
and reusing message templates. The idea is to perform a
complete serialization only when the first message of a cer-
tain structure is sent by a SOAP communication endpoint.
This message is then saved in the stub. Subsequent mes-
sages with the same structure and some of the same con-
tent (for example, calls to the same remote Web Service)
can then reuse parts or all of the saved template instead of
regenerating it from scratch. Although we focus our discus-
sion and performance study on the client side, differential
serialization could be used equally well by a server sending
identical (or similar) responses to multiple separate clients.

In comparing an outgoing message to a saved template,
there are four different matching possibilities:

Message Content Match: The entire message could be
exactly the same as one that was sent from the client earlier.
In this case, the client can simply resend the message as is,
and avoid serialization altogether.

Perfect Structural Match: The structure and size of the
message could be the same as an earlier message, but the
values of some of the fields of the message could have
changed. In this case, there is an opportunity to replace



the expensive serialization step with a faster step that writes
only the changed values into the serialized buffer. The seri-
alization of values that have not changed, and of the SOAP
message metadata (tags) can be avoided.

Partial Structural Match: The structure of the message
could be the same—that is, it could have the same header
and field types—but some of the values and the size of the
message may not match those of the saved template. Size
mismatch results from the fact that, unlike in-memory base
types, the serialized form of data can require different num-
bers of characters to represent. For example, encoding the
integer 1 requires only one character, whereas 13902 re-
quires five. In this case, the template could be expanded (or
contracted) to meet the requirements of the new message.
Performance improvement depends on how much faster it is
to resize the message instead of serializing it from scratch.

First-Time Send: Finally, the first time a message is sent,
it needs to be created (serialized) from scratch. The perfor-
mance is the same as without differential serialization, plus
the negligible overhead of checking to see if a stored copy
exists and saving a pointer to it after it has been created.

These four cases provide the basis for our discussion.
Clearly, message content matches provide the most oppor-
tunity for performance improvement, but only clients that
send the same exact message repeatedly (to one or more
different SOAP servers) can take advantage of it. The next
best case is perfect structural matches, which don’t require
resizing the message template in memory. A Data Up-
date Tracking (DUT) table tracks whether programs have
changed data items since they were last serialized into the
SOAP message. This allows us to limit the writing to only
those values that have changed. We implement a tech-
nique that makes perfect structural matches more likely to
occur (as opposed to the more expensive partial structural
matches). We do this by stuffing serialized values with
whitespace to accommodate potential future updates that
would otherwise require expansion. To reduce the cost of
partial structural matches, we store messages in potentially
noncontiguous memory chunks to limit the impact of expan-
sion, which could result in a substantial amount of expen-
sive shifting and even memory reallocation. With message
chunking, these effects are limited by the size of a chunk
rather than the size of the whole message. Finally, we fur-
ther reduce the cost of increasing field size by stealing extra
space from neighboring fields, instead of shifting entire por-
tions of message chunks.

3.1 Data Update Tracking (DUT) Table

When called upon to make an outcall, the client stub deter-
mines whether parts or all of the last copy of the same mes-
sage type can be reused. To do so, the stub contains code
that checks for a Message Content Match by using a DUT

table, which associates in-memory data with their location
in the serialized message template. Each saved message has
its own DUT table, each of whose entries corresponds to
a data element in the message, and contains the following
fields:

� a pointer to a data structure that contains information
about the data item’s type, including the maximum size
of its serialized form� a dirty bit to indicate whether it has been changed since
the last time the data was written into the serialized
message� a pointer to its current location in the serialized mes-
sage� its serialized length—the number of characters in the
message necessary for storing the serialized form of
the most-recently-written value� its field width—the number of characters in the mes-
sage template currently allocated to this data item (note
that the field width must always match or exceed the
serialized length)

If none of the dirty bits are set, the message has not changed
and can be resent as is. Structural matches are implemented
by scanning the DUT table and reserializing only those val-
ues whose dirty bits are set. Since DUT table entries point
directly into the serialized form of the message, finding the
location of the data item has constant cost. Clearly, this
approach requires programmers to go through the DUT ta-
ble when writing their in-memory data structures, and to
be cognizant that the data they are using in memory will
need to be serialized into a SOAP message. We foresee our
SOAP library requiring all “serializable” data to be located
in objects that contain “get” and “set” methods, whose im-
plementation will update the DUT table transparently.

3.2 Shifting, Chunking, Stuffing, and Stealing

If the new serialized form of some value does not fit in the
currently allocated space, we perform on-the-fly message
expansion, which we call shifting. Shifting is necessary
when the serialized form of the new value exceeds the field
width value in the DUT table entry. At this point, all the
bytes of the message are shifted to the right to make room
for the new value, and the pointers into the message from
other DUT table entries are updated accordingly.

To reduce the cost of shifting, serialized messages are
not stored in contiguous memory regions; instead, we store
them in variable sized potentially noncontiguous chunks. If
necessary, chunks can be reallocated into different, larger
memory regions, or split to form two smaller chunks. Con-
figurable parameters determine the default initial chunk
size, the threshold at which chunks are split into two, and
the space that is initially left empty at the end of a chunk



(to allow for shifting without reallocation). Selecting the
appropriate chunk size to reduce the cost of shifting must
be balanced against several other factors that chunk size in-
fluences, including CPU cache effectiveness, the number of
system calls needed to send messages (and whether the OS
supports scatter-gather sends), the size of the underlying
protocol implementation’s send buffers, and the overhead
of maintaining the message in chunks.

If we write into the serialized message a value that re-
quires less space than the old value occupied, we simply
rewrite the tag immediately to the right of the new value,
and pad the space between the end tag of this field and the
start tag of the next with whitespace, which is explicitly le-
gal in XML (and therefore SOAP). This is one way that the
field width can come to exceed serialized length for a data
item. The other is by explicitly allocating more space than
necessary when the first template message is generated. We
call this stuffing. In particular, most types have associated
with them a maximum number of characters that any of its
serialized values can possibly occupy.2 Setting field widths
to maximum values can help avoid shifting altogether, at
the expense of larger messages, both in memory and on the
wire. Storing both the field width and the current serialized
length, and allowing them to contain different values, also
enables stealing space from neighboring data items instead
of shifting entire portions of message chunks. This can fur-
ther reduce the cost of expanding field sizes; we explore
stealing in a separate paper [4].

3.3 Chunk Overlaying

Based on the description thus far, differential serialization
has considerable memory requirements. In particular, it re-
quires memory to store message data, the entire serialized
form of the message, and the DUT table. Clearly this is
not a desirable characteristic, especially as messages grow.
Chunk overlaying helps limit memory requirements by al-
lowing multiple portions of large arrays to be sent from the
same message chunk. The approach takes advantage of the
fact that large arrays contain multiple chunk-size portions
that encode only the entries of the array. At any given time,
the serialized data and the DUT table entries for only one
portion of the array (a portion that will fit into a single
chunk) is present in memory. That portion of the array is
sent, and then the values of the next portion are serialized
into the same chunk. This step requires that all the val-
ues (after the first chunk) be reserialized into the array. In
addition to the known benefits of chunking and streaming
(as used by HTTP 1.1 implementations), our approach has
added potential performance gains because the tags that de-
scribe the data need not be rewritten. We explore chunk

2Note that strings cannot take advantage of stuffing because there is no
maximum size string.

overlaying in a separate paper [3].

3.4 Applications that can Benefit

bSOAP is optimized for applications that resend similar
messages repeatedly. The communication patterns of these
applications determine the extent to which they can benefit
from using bSOAP. A brief description of Grid applications
that we think will be able to benefit from bSOAP, follows.

The Linear System Analyzer [11] is a high performance
problem solving environment for large linear systems Ax =
b. Its approach allows scientists to develop solution strate-
gies by dynamically swapping out components that encap-
sulate linear algebra libraries. Scientists can connect var-
ious components in a cycle to repeatedly refine and re-
calculate the solution vector until the required convergence
condition is met. Since the size and form of the array does
not change over different iterations, consecutive messages
exhibit perfect structural matches, so bSOAP could be used
to achieve performance improvements.

The Metadata Catalog Service (MCS) [20] efficiently
manages metadata associated with files generated by data-
intensive applications. A general metadata schema is used
to specify all the attributes associated with each file. MCS
provides an API to perform various operations, including
adding, deleting and querying metadata. Clients use SOAP
to connect to the MCS Web service, which is connected to
a backend MySQL database. Since each request sent by a
user conforms to the metadata schema, the format of the
SOAP payload is the same for each request. bSOAP per-
fect structural match can therefore be used to improve the
performance of MCS.

Flocks of Condor systems [5] exchange ClassAd infor-
mation to describe the resources in various Condor clus-
ters that combine to define a large Grid-scale system. It
stands to reason that information will be similar in structure
and even content (if resource characteristics do not change)
across multiple consecutive exchanges. Therefore, bSOAP
would be able to automatically reserialize only the differ-
ences from previous exchanges, without requiring any al-
teration to Condor resource managers themselves.

Google and Amazon.com provide a Web services inter-
face. The XML Schema used for the responses to user re-
quests is always the same (for a particular operation in the
Web service); only the values stored in the XML Schema
instance change, because they depend on the queries sent
by users. The optimizations in bSOAP for perfect structural
match could significantly reduce the time spent serializing
response messages from the heavily-used servers.



4 Performance Study

In this section, we describe the performance of our bSOAP
implementation that uses differential serialization. The tests
were run on a dual processor 2.0 GHz Pentium 4 Xeon
with 1GB DDR Ram and a 15K RPM 18GB Ultra-160
SCSI drive running Debian Linux version 2.4.24. bSOAP
and gSOAP code is compiled with gcc version 2.95.4
with optimization flag “-O2.” We isolate and measure the
Send Time in the client by starting a timer before prepar-
ing the message for sending, and stopping the timer right
after the final send() system call on the socket. Rel-
evant socket options, for both gSOAP and bSOAP, in-
clude SO KEEPALIVE, TCP NODELAY, SO SNDBUF =
32768, and SO RCVBUF = 32768. Because we’re inter-
ested only in Send Time for this set of tests, each client
connects to a dummy SOAP server on a different machine,
over a Gigabit ethernet link; the server does not deserialize
or parse the incoming SOAP packet. Our results reflect the
average of 100 measurements for each reported data point.

4.1 Message Content Matches

This section studies the effect of the performance improve-
ment, in the case where stored message templates can be
reused without change. Thus, we characterize the per-
formance improvement for message content matches. For
these experiments, we vary the following factors:

� The type of data contained in the message. We have
used integers, IEEE 754 standard doubles and mesh in-
terface objects (MIO’s). An MIO is a structure of the
form [int, int, double], where the first two fields repre-
sent mesh coordinates, and the third represents a field
value. MIO’s can be used, for example, for communi-
cation between two partial differential equation (PDE)
solvers on different domains [17, 7].� The size of the message: We vary message sizes by
sending a single array containing 1, 100, 500, 1K, 10K,
50K, and 100K doubles.� The SOAP implementation: We measure the perfor-
mance of bSOAP with differential serialization turned
on and turned off, and compare against unaltered im-
plementations of gSOAP and XSOAP.

Figure 1 plots the average Send Time for SOAP messages of
various sizes, containing a single array of MIO’s. Figures 2
and 3 repeat the same tests for arrays of doubles and arrays
of integers, respectively.

Figures 1, 2, and 3 show that bSOAP performance is
slightly better than gSOAP, when both implementations se-
rialize entire messages.3 We compare our performance

3gSOAP has full support for “multi-ref”, bSOAP does not. We expect
the performance of bSOAP with full serialization to be equivalent to that

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104
Message Content Matches: MIO’s

Number of MIO’s in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

XSOAP
gSOAP
bSOAP Full Serialization
bSOAP Message Content Match

Figure 1. Comparing gSOAP and XSOAP to the
Full Serialization of a bSOAP message, and to sub-
sequent sends where the entire message is stored and
can be resent without being changed (“bSOAP Mes-
sage Content Match”). Send Time in milliseconds for
various size arrays of MIO’s. We have used a log
scale on both the x-axis and y-axis.

100 101 102 103 104 105
10−3

10−2

10−1

100

101

102

103
Message Content Matches: Doubles

Number of Doubles in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

XSOAP
gSOAP
bSOAP Full Serialization
bSOAP Message Content Match

Figure 2. This figure corresponds exactly to Fig-
ure 1, for arrays of doubles instead of MIO’s.



100 101 102 103 104 105
10−3

10−2

10−1

100

101

102

103
Message Content Matches: Integers

Number of Integers in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

gSOAP
bSOAP Full Serialization
bSOAP Message Content Match

Figure 3. This figure corresponds exactly to Fig-
ures 1 and 2, for arrays of integers instead of MIO’s
or doubles.

against XSOAP, a fast Java SOAP implementation which,
as expected, is still slower than C/C++-based gSOAP and
bSOAP implementations. bSOAP message content matches
are approximately seven times faster than full serialization
for arrays of MIO’s, approximately ten times faster for large
arrays of doubles, and at least four times faster for large ar-
rays of integers.

4.2 Structural Matches

This section explores the cost of writing data directly into
a buffer rather than explicitly serializing messages on each
send. That is, we characterize the potential performance
benefit of perfect structural matches. Again, we vary the
type of data sent, the size of the data, and the SOAP imple-
mentation. Our implementation with differential serializa-
tion varies the number of data items that need to be over-
written in the serialized version of the array. For this set of
tests, we assume that the size of the array, and each of its el-
ements, are the same in the template as they are in the new
outgoing message, so shifting and stealing are unnecessary.

Figure 4 plots Send Time for various size arrays of
MIO’s. The graph re-plots bSOAP: Message Content Match
and bSOAP: Full Serialization, from Figure 1. We also in-
clude bSOAP when 25%, 50%, 75%, and 100% of the MIO
doubles must be re-serialized (the remaining portion stays
the same as in the saved message, as do MIO integers). Fig-
ure 5 shows results of the same tests for doubles.

of gSOAP when multi-ref support is added.

0 1 2 3 4 5 6 7 8 9 10

x 104

0

100

200

300

400

500

600

700

800

900

1000
Perfect Structural Matches: MIO’s 

Number of MIO’s in the Array

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

bSOAP Full Serialization
100% Value Re−serialization
75% Value Re−serialization
50% Value Re−serialization
25% Value Re−serialization
Message Content Match

Figure 4. Send Time in milliseconds for various
size arrays of MIO’s, when various percentages of the
stored values must be re-serialized.

0 1 2 3 4 5 6 7 8 9 10

x 104

0

100

200

300

400

500

600
Perfect Structural Matches: Doubles

Number of Doubles in the Array

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

bSOAP Full Serialization
100% Value Re−serialization
75% Value Re−serialization
50% Value Re−serialization
25% Value Re−serialization
Message Content Match

Figure 5. Send Time in milliseconds for various size
arrays of doubles, when various percentages of the
stored values must be re-serialized.



100 101 102 103 104 105
10−2

10−1

100

101

102

103

104
Worst Case Shifting: MIO’s

Number of MIO’s in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

Worst Case (100%) Shifting with 32K Chunks
Worst Case (100%) Shifting with 8K chunks
100% Value Re−serialization, No Shifting

Figure 6. Send Time in milliseconds for various size
arrays of MIO’s. For worst case shifting, each value
of the array must be expanded from the size of the
smallest possible MIO (three characters) to the size
of the largest possible MIO (46 characters).

Figures 4 and 5 demonstrate that, as expected, Send
Time depends directly on array size and on the percentage
of values that must be re-serialized. The difference between
100% Value Re-serialization and Full Serialization shows
the cost of generating and writing SOAP tags, compared to
serializing only the data itself.

4.3 Shifting

This section quantifies the worst-case cost of shifting. Fig-
ure 6 shows the amount of time needed to insert largest size
(46 character) MIO’s into an array of smallest size doubles,
causing shifting for each re-serialized value. Since shifting
performance can depend on message chunk size, we ran the
tests with a chunk size of both 8K and 32K. Figure 7 shows
the results of repeating the tests with arrays of doubles.

Figures 6 and and 7 show that shifting in the worst case
can incur a significant performance penalty. In particular,
Send Time when shifting all MIO’s and doubles by the max-
imum possible amount is approximately four to five times
slower when compared to re-serialization when shifting is
unnecessary.

Fortunately, we don’t expect the worst case to occur very
often. Figures 8 and 9 plot Send Times for intermediate
size values to maximum size values, when not all of the
array values need to be re-serialized. These figures show
that as the number of values that need to be re-serialized
and shifted is reduced, the performance approaches the case

100 101 102 103 104 105
10−2

10−1

100

101

102

103

104
Worst Case Shifting: Doubles

Number of Doubles in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

Worst Case (100%) Shifting with 32K Chunks
Worst Case (100%) Shifting with 8K Chunks
100% Value Re−serialization, No Shifting

Figure 7. Send Time in milliseconds for various size
arrays of doubles. For worst case shifting, each value
of the array must be expanded from the size of the
smallest possible double (one character) to the size of
the largest possible double (24 characters).

where shifting is unnecessary.

4.4 Stuffing

One way to avoid shifting altogether is to always allocate
the maximum possible space for the value, and stuff to fill
the unused portion with whitespace. For doubles the max-
imum encoded size is 24 characters plus the size of the
tags, and for integers it is 11 characters, plus the size of
the tags. There are two sources of overhead due to this ap-
proach. First, the client sends larger messages. To quantify
the cost due to larger messages, we compared the cost of
sending the smallest possible encoded values for doubles
and MIO’s (one and three characters respectively), with the
cost of sending the same values within the maximum field
size (24 and 46 characters). We also plot an intermediate
field size for each (38 and 18 characters for MIO’s and dou-
bles). The results are shown in Figures 10 and 11, for arrays
of MIO’s and doubles, respectively.

The second source of overhead lies in shifting the clos-
ing tag when writing values that are smaller than those in
the previous stored message. For example, when a large
double is encoded, it consumes the full extent of the field
size. When a smaller value is written on top of it for the
next send, the closing tag must be written further left within
the field, and whitespace must be written in the remainder
of the field. To quantify this effect, we wrote smallest possi-
ble values for doubles and MIO’s on top of largest possible



100 101 102 103 104 105
10−2

10−1

100

101

102

103

104
Shifting Performance: MIO’s

Number of MIO’s in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

100% Value Re−serialization with Shifting
75% Value Re−serialization with Shifting
50% Value Re−serialization with Shifting
25% Value Re−serialization with Shifting
100% Value Re−serialization, No Shifting

Figure 8. Send Time in milliseconds for various size
arrays of MIO’s, where different percentages of the
array must be expanded from a 36-character MIO to
the size of the largest possible MIO (46 characters).

100 101 102 103 104 105
10−2

10−1

100

101

102

103

104
Shifting Performance: Doubles

Number of Doubles in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

100% Value Re−serialization with Shifting
75% Value Re−serialization with Shifting
50% Value Re−serialization with Shifting
25% Value Re−serialization with Shifting
100% Value Re−serialization, No Shifting

Figure 9. Send Time in milliseconds for various size
arrays of doubles, where different percentages of the
array must to be expanded from an 18 character dou-
ble to the largest possible double (24 characters).

100 101 102 103 104 105
10−3

10−2

10−1

100

101

102

103
Stuffing Performance: MIO’s

Number of MIO’s in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

Max Field Width: Full Closing Tag Shift
Max Field Width: No Closing Tag Shift
Intermediate Field Width: No Closing Tag Shift
Min Field Width: No Closing Tag Shift

Figure 10. Send Time in milliseconds for various
size arrays of MIO’s, where values are stuffed to 46
characters (maximum width), 36 characters (interme-
diate width) and three characters (minimum width).
Also plotted is the cost of writing three-character
MIO’s into fields containing 46 character MIO’s, re-
quiring a tag shift.

values; this results in the closing tag being shifted as much
as possible. These plots are labelled as “Max Field Width:
Full Closing Tag Shift” on Figures 10 and 11.

Figures 10, and 11 demonstrate that the most significant
performance penalty of stuffing lies in shifting the closing
tag rather than sending larger messages, for our worst-case
tests. We expect this case to occur much less frequently
than smaller tag shifts. This test was designed to reveal an
upper bound on the performance penalty incurred by stuff-
ing. However, writing single character doubles is less costly
than writing larger doubles. Therefore, it is possible that the
worst case lies somewhere between (a) writing the smallest
double and the most whitespace, and (b) writing the largest
double and no whitespace. Our current tests do not reveal
where this worst case may actually lie.

4.5 Chunk Overlaying

To characterize the performance of chunk overlaying, we
sent an array of doubles from a single 32K chunk of mem-
ory, and from separate 32K chunks of memory, all of which
were in memory. With chunk overlaying, serialization of all
values (except potentially some in the first chunk) is nec-
essary, so we expect performance to be comparable to the
100% Value Re-serialization plot from Figure 5. Figure 12
confirms this hypothesis.



100 101 102 103 104 105
10−3

10−2

10−1

100

101

102

103
Stuffing Performance: Doubles

Number of Doubles in the Array (Log Scale)

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

 (L
og

 S
ca

le
)

Max Field Width: Full Closing Tag Shift
Max Field Width: No Closing Tag Shift
Intermediate Field Width: No Closing Tag Shift
Min Field Width: No Closing Tag Shift

Figure 11. Send Time in milliseconds for various
size arrays of one character doubles, where values
are stuffed to 24 characters (maximum width), 18
characters (intermediate width), and one character
(minimum width). Also plotted is the cost of writ-
ing single-character doubles into fields containing 24
character doubles, requiring a tag shift.

0 1 2 3 4 5 6 7 8 9 10

x 104

0

100

200

300

400

500

600

700
Chunk Overlaying Performance

Number of Elements (MIO’s or Doubles) in the Array

S
en

d 
Ti

m
e 

(p
er

 c
al

l) 
in

 M
ill

is
ec

on
ds

Chunk Overlay for Double Array
100% Value Serialization for Double Array
Chunk Overlay for MIO Array
100% Value Serialization for MIO Array

Figure 12. Send Time in milliseconds for various
size arrays of MIO’s and doubles, when sending from
a single overlayed chunk vs. sending from multiple
separate chunks.

5 Related Work

Chiuk et. al. [6] address SOAP performance bottlenecks
by using trie data to reduce the number of comparisons for
XML tags. This optimization is useful in SOAP deserial-
ization, and is orthogonal to the issue of saving message
templates. The other optimization they use is chunking and
streaming of messages. gSOAP also provides this feature,
in addition to compression, routing, and the use of opti-
mized XML data representations using XML schema exten-
sibility. These techniques are complementary to the ones we
have proposed. They can be used when an RPC call must
be serialized the first time; differential serialization can then
be used for subsequent calls.

The SOAP specification allows the use of “multi-ref
accessors”—identifiers that refer to previously serialized in-
stances of specific elements of the SOAP call. Multi-ref ac-
cessors can be included within our serialized messages to
further improve serialization performance.

Devaram et. al. [8] describe “parameterized client-side
caching” of messages in files. Entire messages can be sent
as is, and partial caching allows the client to reuse cached
messages and change a few of the parameters for subse-
quent sends. The authors report a best case speedup of
800% over their own original code; this result is consis-
tent with our speedup of approximately 1000%. However,
the authors state that their approach is most appropriate for
requests involving few parameters. The authors do not ad-
dress how to apply their optimization to large arrays of sci-
entific data (which we feel is the case where the technique is
most useful), how to track which changes need to be made
to the cached message, nor how to handle mismatched data
sizes (requiring on-the-fly message expansion or stuffing).

The SOAP community has suggested several different
specifications that would standardize SOAP binary formats,
including base64 encoding, DIME [16] and BEEP [2].
While these techniques do achieve performance gains, they
reduce the simplicity and universality of SOAP, the charac-
teristic that makes it interoperable and attractive.

6 Future Work

Currently, each remote Web Service has its own saved tem-
plate. For applications that send the same (or similar) data
to different remote services, we plan to investigate the ex-
tent to which is would be beneficial for them to share mes-
sage chunks across templates. This would allow serializa-
tion cost to be amortized across multiple sends to different
Web Services. It also may be useful to store multiple differ-
ent messages templates for the same remote service, rather
than one per call type. We plan to quantify the effect that
stuffing has on server-side decoding of incoming messages.
Finally, storing messages at a SOAP server could help in



a completely different way, by suggesting the structure of
future message arrivals. This could help avoid complete
server-side parsing and improve performance, through dif-
ferential deserialization.

7 Summary

We describe a new technique, called differential serializa-
tion, that helps alleviate the SOAP serialization bottleneck.
Rather than reserializing each message from scratch, our
approach saves a copy in the sender stub, tracks the changes
that need to be made for the next message of the same type,
and reuses this saved copy as a template for the next send.
We describe techniques to increase the effectiveness and ap-
plicability of differential serialization, including on-the-fly
message expansion, stuffing, message chunking, and chunk
overlaying. For applications that resend the same mes-
sages repeatedly, our performance study demonstrates an
improvement in Send Time by a factor of four to ten for ar-
rays of different types of data. We also show that resending
messages with similar structure but containing some differ-
ent values can also achieve significant speedup. We char-
acterize the performance penalty for on-the-fly message ex-
pansion, and describe several techniques for counteracting
its adverse effect, including stuffing and chunk overlaying.

References

[1] Globus Toolkit 3.0.2. http://www-unix.globus.
org/toolkit/download.html.

[2] The Blocks Extensible Exchange Protocol Core (BEEP),
March 2001. http://www.ietf.org/rfc/
rfc3080.txt.

[3] N. Abu-Ghazaleh, M. Govindaraju, and M. J. Lewis.
Optimizing Performance of Web Services with Chunk-
Overlaying and Pipelined-Send. To appear in the Interna-
tional Conference on Internet Computing (ICIC), June 2004.

[4] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju. Per-
formance of Dynamic Resizing of Message Fields for Dif-
ferential Serialization of SOAP Messages. To appear in the
International Symposium on Web Services and Applications,
June 2004.

[5] A. R. Butt, R. Zhang, and Y. C. Hu. A Self-Organizing
Flock of Condors. SC ’03, November 15-21, 2003, Phoenix,
Arizona, USA. http://www.sc-conference.org/
sc2003/paperpdfs/pap265.pdf.

[6] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
Limits of SOAP Performance for Scientific Computing. In
Proceedings of HPDC-11, pages 246–254, Edinburgh, Scot-
land, July 23-26, 2002.

[7] Climate Research Committee. Global Ocean-Atmosphere
Land System (GOALS) for Predicting Seasonal-to-
Interannual Climate. National Academy Press, Washington,
D.C., 1994.

[8] K. Devaram and D. Andresen. SOAP Optimization via Pa-
rameterized Client-Side Caching. In Proceedings of PDCS
2003, pages 785–790, November 3-5, 2003.

[9] e. E. Christensen. Web Services Description Language
(WSDL) 1.1, March 2001. http://www.w3.org/TR/
wsdl.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. Computer 35(6),
2002.

[11] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubra-
manian, E. Akman, F. Breg, S. Diwan, and M. Govindaraju.
Enabling Technologies for Computational Science, chapter
10 The Linear System Analyzer, pages 123–134. Kluwer,
Boston, 2000.

[12] Globus Alliance. OGSA-C. http://www-unix.
globus.org/ftppub/ogsa-c/packages/.

[13] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski,
D. Gannon, and R. Bramley. Merging the CCA Component
Model with the OGSI Framework. In 3rd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
May 12-15, 2003, Tokyo, Japan.

[14] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley,
and D. Gannon. Requirements for and Evaluation of RMI
Protocols for Scientific Computing. In Proceedings of Su-
perComputing 2000, November 2000.

[15] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
Canon, and H. F. Nielsen. Simple Object Access Protocol
1.1, June 2003. http://www.w3.org/TR/SOAP.

[16] IBM and Microsoft Corporation. Direct Internet Message
Encapsulation (DIME). http://www-106.ibm.com/
developerworks/library/ws-dime/.

[17] F. Illinica, J. F. Hetu, and R. Bramley. Simulation of
3D Mold-Filling and Solidification Processes on Distributed
Memory Parallel Architectures. In Proceedings of Interna-
tional Mechanical Engineering Congress and Exposition.

[18] Indiana University, Extreme! Computing Lab. Grid Web
Services. http://www.extreme.indiana.edu/
xgws/.

[19] S. Krishnan and D. Gannon. XCAT3: A Framework for
CCA Components as OGSA Services. In Proceedings of
HIPS 2004: 9th International Workshop on High-Level Par-
allel Programming Models and Supportive Environments,
April 2004.

[20] G. Singh, S. Bharathi, A. Chervenak, E. Deelman,
C. Kesselman, M. Mahohar, S. Pail, and L. Pearlman. A
Metadata Catalog Service for Data Intensive Applications.
Proceedings of Supercomputing, November 2003.

[21] A. Slominski, M. Govindaraju, D. Gannon, and R. Bram-
ley. Design of an XML based Interoperable RMI System :
SoapRMI C++/Java 1.1. In Proceedings of PDPTA, pages
1661–1667, June 25-28, 2001.

[22] SoapWare.Org. The Leading Directory for SOAP 1.1 Devel-
opers. http://www.soapware.org/directory/
4/implementations.

[23] The Apache Project. Axis Java. http://ws.apache.
org/axis/.

[24] R. A. van Engelen and K. Gallivan. The gSOAP Toolkit for
Web Services and Peer-To-Peer Computing Networks. In
The Proceedings of the 2nd IEEE International Symposium
on Cluster Computing and the Grid (CCGrid2002), pages
128-135, May 21-24, 2002, Berlin, Germany.


