Critical Grid Research Issues: Perspective and Lessons from Large-Scale Grids

Andrew A. Chien, Moderator HPDC-13 Panel June 6, 2004

Grids, Grids, Everywhere!

NASA Information Power Grid

UK e-Science Grid

- Building the UK e-Science Grid

Linking Orld-sambled resources at all the UK s-Science Centres

HPDC-13, Hawaii

NSF TeraGrid Backbone

Multiple 10 GbE

Argonne

NCSA o

WIRE

NOC

... and Grid2003!

Calte

SDSC

TeraGrid Partners lliance Partners ene Backbon

Grid2003

HPDC Research Maturing

- Learn from Large-scale Production Grids
- What is Reality for Grid Systems? What is Not?
- What Works? What Doesn't? What are the Hard Problems?
- Measurements, Use, Experience to Inform Research.

HPDC-13, Hawaii

Panel Members

- Grid2003 Rob Gardner, U Chicago
- Planetlab Jeff Chase, Duke
- Condor Miron Livny, U Wisconsin
- Globus Ian Foster, U Chicago
- Andrew Chien, UCSD (Moderator)

Panel Charge and Organization

- Top 5 Things Learned (5 minutes each)
 - » What ARE major problems (and need extensive research)
 - » What are NOT major problems
 - » Two "takeaways" for every HPDC researcher
- Panel response (5 minutes)
- Questions / Comments from Audience

Experience and Lessons from Production Grids

Rob Gardner University of Chicago

not major problems

- bringing sites into single purpose grids
- simple computational grids for highly portable applications
- specific workflows as defined by today's JDL and/or DAG approaches
- centralized, project-managed grids to a particular scale, yet to be seen

major problems

- Site, service providing perspective:
 - maintaining multiple "logical" grids with a given resource; maintaining robustness; long term management; dynamic reconfiguration; platforms
 - complex resource sharing policies (department, university, projects, collaborative), user roles
- Application perspective:
 - challenge of building integrated distributed systems
 - end-to-end debugging of jobs, understanding faults
 - collection, understanding of faults
 - limited workflows and interfaces, data exchange with other grids

three takeaways

- "think outside your grid"
- application developers/integrators do more complex things than simple computations
 - especially when complex, distributed datasets are involved
 - process activities/states need propagation to enable high level, intelligent decision making
- need to think of new ways to build and manage persistent infrastructures
 - favor decentralized, "entrepreneurial" models

Experience and Lessons from Production Grids

Jeff Chase Duke University

http://www.cs.duke.edu/~chase

Grids are federated utilities

- Grids should preserve the control and isolation benefits of private environments.
- There's a threshold of comfort that we must reach before grids become truly practical.
 - Users need service contracts.
 - Protect users from the grid (security cuts both ways).
- Many dimensions:
 - decouple Grid support from application environment
 - decentralized trust and accountability
 - data privacy
 - dependability, survivability, etc.

Grids Need "Underware"

- Shift focus away from "meta-computing" middleware and toward underware and infrastructure services.
 - Enable user control over application environment.
 - Instantiate complete environment down to the metal.
 - OS is just another replaceable component.
 - Examples of "underware":
 - Virtual machines (Xen, Collective, JVM, etc.)
 - Net-booted physical machines (Cluster-on-Demand)
 - Innovate below OS and alongside it (infra-services).
 - Allot physical resources to each container/slice.

Grids Need Accountability

- Grid clients interact with many different components in different trust domains.
- Deep new trust management concerns go beyond basic support for authentication and secure communication.
- How to establish a Rule of Law in the Wild West?
- "Trust But Verify":
 - Non-repudiable actions: signed RPCs, etc.
 - Record/audit actions to detect deviant behavior.
 - Assign/prove responsibility when things go wrong.
 - Grounding in socio-legal-economic framework?

"Non-Problems"

- Technology advances are enabling new ways to transcend differences across sites.
 - Old: meta-APIs to "paper over" varying local facilities.
 - New: hide differences behind familiar low-level APIs.
 - API-free grid: focus on application-independent ways to grid-enable ("utilify") applications?
- Grid "plumbing" is shifting to service frameworks and standardization efforts.
 - Plumbing is a technology; we just need to agree on pipes, threading, etc.
 - Focus on architecture: what/where are the hooks for policy, monitoring, diagnosis, adaptation, control?

"Takeaways"

- Underware
- Accountability

http://www.cs.duke.edu/~chase

Experience and Lessons from Production Grids

Miron Livny Computer Sciences Department University of Wisconsin-Madison miron@cs.wisc.edu

not major problems (but often studied extensively in rsch community)

> Performance

- Meta scheduling
- Grid economy
- Communication overhead
- Reservations
- Predictions

are major problems (and could benefit from extensive rsch in community)

> Trouble Shooting

- Authentication
- Software layers
- Remote debugging
- > Resource allocation (load control)
 - Storage
 - Connections
 - File descriptors

the two things "takeaways" you learned that you'd transplant into every researcher's head

- Robustness first performance later (information and control flow hold the key)
- Never assume that what you know is still true (always be prepared to react to the unexpected)

the globus project" www.globus.org

Experience and Lessons from Production Grids

Ian Foster Argonne National Laboratories and University of Chicago

Five Major Problems

- Troubleshooting & problem determination
 - Trace problems to causes; instrumentation
- Autonomic management
 - Manage scope of problems, provide QoS
- Trust and security

www.alobus.ora

the globus alliance

- Could yet be a showstopper
- Application models
 - Integrating on-demand resources
- Heterogeneous schema
 - ◊ Integrating data, services, etc.

foster@mcs.anl.gov

Five Non-Problems

- Scalability to millions of devices
 - We don't live in exponential regimes
- Basic resource access, monitoring, etc.
 - ◊ But that doesn't stop attempts to reinvent ...
- Identifying interesting Grid applications
 - ◊ There are many of them
- Compilers and programming languages
 - ◊ At least not so far
- Coming up with problems
 - There are many more than 5!

foster@mcs.anl.gov

ARGONNE + CHICAGO

generaliance Implications of Large-Scale Deployments for Grid Research

- It becomes <u>possible</u> to evaluate new ideas in realistic contexts and at realistic scales
 - \Rightarrow Will become <u>obligatory</u> for serious research
 - Places constraints on what is studied
 - Need consensus on platforms & workloads
- We can identify <u>real</u> problems associated with Grid creation, operation, & use
 - Again, makes research harder in some sense, but also more relevant