Evaluating the Cost-Benefit of Using Cloud Computing to Extend the Capacity of Clusters

<u>Marcos Dias de Assunção^{1,2}, Alexandre di Costanzo¹</u> and Rajkumar Buyya¹

¹ Department of Computer Science and Software Engineering ² National ICT Australia (NICTA) Victoria Research Laboratory The University of Melbourne

Cloud Computing

 Maturity of virtual machines, virtualised storage and Web technologies

- Software, Platform and Infrastructure
- Emergence of commercial infrastructure managed by virtual machine technologies
 - Amazon EC2

Infrastructure as a Service

- Use of resources in a pay as you go manner
- Web Services APIs and command line tools
- Environments can scale on demand
- Start-ups can avoid initial outlays for computing capacity
- Organisations may have existing computing infrastructure
 - How to scale out to the Cloud?

Challenge and Scenario

- Evaluation of using a commercial provider to extend the capacity of a local cluster
- Different provisioning strategies may yield different ratios of performance improvement to money spent using resources from the Cloud

Challenge and Scenario

Challenge and Scenario

Backfilling Policies

- Conservative and Aggressive
- Selective
 - Requests are given reservations if they have waited long enough in the queue
 - Long enough is determined by the requests' eXpansion Factor:
 - Xfactor = (wait time+runtime)/run time
 - The threshold is given by the average slowdown of previously completed requests
 - Use of Adaptive-Selective-Backfilling*

* S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan, Selective Reservation Strategies for Backfill Job Scheduling, 8th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP '02), pp. 55-71, 2002

Strategy Sets

- Naïve:
 - Use commercial provider when the request cannot start immediately on local cluster
- Shortest Queue:
 - Aggressive backfilling

- Compute number of VMs required by requests in the queue
- Redirect request if commercial provider's number is smaller

Weighted Queue:

 Number of VMs that can be borrowed from commercial provider is the number of VMs required by requests minus VMs in use

Selective

 When the request's xFactor exceeds the threshold, the scheduler makes a reservation at the place that yields the smallest slowdown

Experiments

- Simulation of two-month-long periods
- SDSC Blue Horizon machine with 144 nodes
 - Number of VMs
- Price of a virtual machine per hour
 - Amazon EC2's small instance: US\$0.10
 - Network and storage are not considered
- Values are averages of 5 simulation rounds

Performance Metrics

• Average Weighted Response Time (AWRT) of site k:

$$AWRT_{k} \quad \frac{p_{j} \quad m_{j} \quad ct_{j} \quad st_{j}}{p_{j} \quad m_{j}}$$

- τ_k : requests submitted to site k
- p_j : the runtime of request j
- *m_j*: the number of processors required by request *j ct_j*: request *j*'s completion time
 st_j: if the submission time of request *j*

- Performance Improvement Cost of a strategy set st.

 $PIC_{st} = \frac{Amount_spent}{AWRT_{base}} = AWRT_{st}$

Performance Improvement Cost

U. Lublin and D. G. Feitelson, The Workload on Parallel Supercomputers: Modeling the Characteristics of Rigid Jobs, Journal of Parallel and Distributed Computing, Vol. 63, n. 11, pp. 1105–1122, 2003

Deadline Constrained Applications

- Users may have stringent requirements on when the virtual machines are required
- Deadline constrained requests have:
 - Ready time

- Duration
- Deadline
- Cost of using Cloud resources used to meet requests' deadlines and decrease the number of deadline violations and request rejections

Deadline Aware Strategies

Conservative

- Places a request where it achieves the best start time
- If rejections are allowed and deadline cannot be met, reject the request

Aggressive

- Builds the schedule using aggressive backfilling* and Earliest Deadline First
- If request deadlines are broken in the local cluster, try the commercial provider
- If rejections are allowed and deadlines are broken, reject the request

*G. Singh, C. Kesselman and E. Deelman, Adaptive Pricing for Resource Reservations in Shared Environments, In 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), pp. 74–80, Austin, 2007.

Cost of Reducing Deadline Violations

The non-violation cost is given by:

 $\frac{Amount_spent_{st}}{viol_{base}} viol_{st}$

• Where:

- Amount_spent_{st}: amount spent with Cloud resources
- viol_{base}: the number of deadline violations under the base strategy set
- viol_{st}: the number of deadline violations under the evaluated strategy set

Cost of Reducing Deadline Violations

- SDSC Blue Horizon's trace divided into twomonth-long intervals
- We vary the % of requests with deadlines
 Stringency factors of 0.9, 1.3 and 1.7

Cost to Reduce Job Rejections: Aggressive Strategy Set

- SDSC Blue Horizon's trace
- We vary the % of requests with deadlines
- Stringency factors of 0.9, 1.3 and 1.7

Expenditure vs. Job Slowdown

Metric	Naïve	Shortest Queue	Weighted Queue	Selective
Amount spent with VMs (\$)	5478.54	5927.08	5855.04	4880.16
Number of VM/Hours	54785.40	59270.80	58550.40	48801.60
AWRT (improvement)	15036.77	15065.47	15435.11	14632.34
Req. slowdown (improvement)	38.29	37.65	38.42 🌔	39.70

SDSC Blue Horizon's trace divided into two-month-long intervals

Conclusions

- Scheduling policies can yield different ratios of performance improvement to money spent
 - Naïve policy has a higher performance improvement cost
- Selective policy provides a good ratio of money spent to job slowdown improvement
- Using commercial provider to meet job deadlines
 - Less than \$3,000 were spent to keep the number of rejections close to zero

Future Work

- Scheduling strategy that strikes a balance between money spent and performance improvement
- Use of the Cloud to handle peak demands
- Experiments with the real system
 - Applications that can benefit from using local and remote resources
 - Consider other resources such as storage and network

Thank you for your attention and patience Questions & Answers