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It constitutes the third pillar of science 
and engineering, in addition to theory 
and experiment
Traditional application areas include
0DNA Analysis
0Drug Design
0Medicine
0Aerospace
0Manufacturing
0Weather Forecasting and Climate Research

New architectures provide new 
opportunities     
0Graph Traversals
0Dynamic Programming
0Backtrack Branch & Bound
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High Performance Computing has Become an Enabler 
of Progress in Science and Engineering

UC Berkeley’s
“Dwarfs”



Hardware Development over 60 Years

•Performance growth:
12 orders of magnitude

•Number of Processors:
From 1 to more than 100,000

This rise in the importance of HPC has 
happened in the context of a dramatic 
development of hardware technology
over past decades:



From Eniac (1946) …

103 OPS



…to LANL Roadrunner: Top 500 #1 

Cell Blade

12,960 Cell chips (100 GF double precision)
Each Cell contains a PowerPC and 8 SPEs
6,480 dual-core Opterons
129,600 Cores

2,483 KW

1.105 PETAFLOPS

The first machine reaching
Peta-scale performance



Reaching the Power Wall

1946-2004
0general-purpose computing: sequential
0clock frequency: 5 KHz 4 GHz

Since 2004
0clock  frequency growth is flat – as a result of power 

wall, instruction-level parallelism (ILP) wall
0number of transistors per chip still grows exponentially
0the only way to maintain exponential performance 

growth is parallelism
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Multi-Core Systems
Dominating Computer Architectures

Cell Broadband Engine (IBM/Sony/Toshiba)                        
0 Power Processor (PPE) and 8 Synergistic PEs (SPEs)
0 peak 100 GF double precision (IBM Power XCEll 8i)

Tile64  (Tilera Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0 170-300mW per core; 600 MHz – 1 GHz 
0 192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: an RHBD version of Tile64 (2011)
0 49 cores, arranged in a 7X7 grid
0 70 GOPS at max power of 28W 

80-core research chip from Intel (2011)
0 2D  on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt
0 Note: ASCI Red (1996): first machine to reach 1 TF

4,510 Intel Pentium Pro nodes (200 MHz)  
500 KW  for the machine + 500 KW for cooling of the room
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“High productivity” implies three properties:
1. human-centric: programming at a high level of abstraction
2. high-performance: providing “abstraction without guilt”
3. reliability 

Raising the level of abstraction is acceptable only if   
target code performance is not significantly reduced

This relates to a broad range of topics:
0 language design
0 compiler technology
0 operating and runtime systems
0 library design and optimization
0 intelligent tool development
0 fault tolerance
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The Meaning of “High-Productivity”



The Success of the von Neumann Model

von Neumann
Model

Programming
Languages

Hardware

Fortran

C

Algol

Java

…

IBM 1960

IBM 1970

DEC 1982

Fujitsu 1994

…

Lenovo 2006

can be efficiently simulated

The result of such a successful “bridging model” is 
performance portability: algorithms are written just once. 

No comparable model has yet emerged for parallel 
programming. Efforts to find such a model began  
decades ago in the area of HPC…



real,  allocatable A(:, : ), B(:, : )  
…

do while ( .not. converged )   
do J=1,N

do I=1,N  
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))

enddo
enddo

A(1:N,1:N)=B
…
enddo

MPI vs HPF:
An Example for Locality Management (Jacobi Relaxation)

Sequential Code

In a parallel code version, let A and B be partitioned into blocks
of columns that are mapped to different processors. All these
processors can work concurrently on their local data, but an
exchange must take place after each iteration…

…P1 P2 Ps

dependence pattern

Parallelization Based on Data Distribution



Pk do while ( .not. converged )   
do J=1,M   ! Number of local columns

do I=1,N  
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
enddo

enddo
…

Pk+1Pk-1

Processor Pk reads:
• rightmost column of Pk-1          
• leftmost column of  Pk+1.

Processor Pk copies:
• its leftmost column to Pk-1    
• its rightmost column to Pk+1.

Boundary Exchange in Overlap Regions

After iteration:
Data Exchange

! purely local operation in each iteration:

halo regions



do while (.not. converged)
do  J=1,M

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

local computation
initialize MPI 

if (MOD(myrank,2) .eq. 1) then                                                            
call MPI_SEND(B(1,1),N,…,myrank-1,..)                                                           
call MPI_RCV(A(1,0),N,…,myrank-1,..)                                                           
if (myrank .lt. s-1) then                                                            

call MPI_SEND(B(1,M),N,…,myrank+1,..)                                                   
call MPI_RCV(A(1,M+1),N,…,myrank+1,..)                                                   

endif
else  …

…

The Key Idea of The Key Idea of 
High Performance Fortran (HPF)High Performance Fortran (HPF)

processors  P(NUMBER_OF_PROCESSORS)
distribute(*,BLOCK) onto P :: A, B

do while (.not. converged)
do  J=1,N

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

global computation

data distribution

HPF ApproachMessage Passing Approach

communication 
compiler-generated

local view of data, local control, 
explicit two-sided communication

global view of data, global control, 
compiler-generated communication

… …

K. Kennedy, C. K. Kennedy, C. KoelbelKoelbel, and H. Zima: , and H. Zima: The Rise and Fall of  High Performance Fortran: An Historical ObThe Rise and Fall of  High Performance Fortran: An Historical Object Lessonject Lesson

Proc. History of Programming Languages III (HOPL III), San DiegoProc. History of Programming Languages III (HOPL III), San Diego, June 2007, June 2007



Fortran+MPI Communication
for 3D 27-point Stencil (NAS MG rprj3)

subroutine comm3(u,n1,n2,n3,kk)

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer n1, n2, n3, kk

double precision u(n1,n2,n3)

integer axis

if( .not. dead(kk) )then

do  axis = 1, 3

if( nprocs .ne. 1) then

call sync_all()

call give3( axis, +1, u, n1, n2, n3, kk )

call give3( axis, -1, u, n1, n2, n3, kk )

call sync_all()

call take3( axis, -1, u, n1, n2, n3 )

call take3( axis, +1, u, n1, n2, n3 )

else

call comm1p( axis, u, n1, n2, n3, kk )

endif

enddo

else

do  axis = 1, 3

call sync_all()

call sync_all()

enddo

call zero3(u,n1,n2,n3)

endif

return

end

subroutine give3( axis, dir, u, n1, n2, n3, k )

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr

double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir 

buff_len = 0

if( axis .eq.  1 )then

if( dir .eq. -1 )then

do  i3=2,n3-1

do  i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len,buff_id ) = u( 2,  i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1

do  i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len, buff_id ) = u( n1-1, i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)

endif

endif

if( axis .eq.  2 )then

if( dir .eq. -1 )then

subroutine comm3(u,n1,n2,n3,kk)subroutine comm3(u,n1,n2,n3,kk)

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer n1, n2, n3, integer n1, n2, n3, kkkk

double precision u(n1,n2,n3)double precision u(n1,n2,n3)

integer axisinteger axis

if( .not. if( .not. dead(kkdead(kk) )then) )then

do  axis = 1, 3do  axis = 1, 3

if( if( nprocsnprocs .ne. 1) then.ne. 1) then

call sync_all()call sync_all()

call give3( axis, +1, u, n1, n2, n3, call give3( axis, +1, u, n1, n2, n3, kkkk ))

call give3( axis, call give3( axis, --1, u, n1, n2, n3, 1, u, n1, n2, n3, kkkk ))

call sync_all()call sync_all()

call take3( axis, call take3( axis, --1, u, n1, n2, n3 )1, u, n1, n2, n3 )

call take3( axis, +1, u, n1, n2, n3 )call take3( axis, +1, u, n1, n2, n3 )

elseelse

call comm1p( axis, u, n1, n2, n3, call comm1p( axis, u, n1, n2, n3, kkkk ))

endifendif

enddoenddo

elseelse

do  axis = 1, 3do  axis = 1, 3

call sync_all()call sync_all()

call sync_all()call sync_all()

enddoenddo

call zero3(u,n1,n2,n3)call zero3(u,n1,n2,n3)

endifendif

returnreturn

endend

subroutine give3( axis, dir, u, n1, n2, n3, k )subroutine give3( axis, dir, u, n1, n2, n3, k )

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3, k, integer axis, dir, n1, n2, n3, k, ierrierr

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id ) = u( 2,  i2,i3)) = u( 2,  i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( n1, buff_id ) = u( n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,  2,i3), buff_id ) = u( i1,  2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len,  buff_id )= u( i1,n2,  buff_id )= u( i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,2), buff_id ) = u( i1,i2,2)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,n3, buff_id ) = u( i1,i2,n3--1)1)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

returnreturn

endend

subroutine take3( axis, dir, u, n1, n2, n3 )subroutine take3( axis, dir, u, n1, n2, n3 )

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer buff_id, integer buff_id, indxindx

integer i3, i2, i1integer i3, i2, i1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

returnreturn

endend

subroutine comm1p( axis, u, n1, n2, n3, subroutine comm1p( axis, u, n1, n2, n3, kkkk ))

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

integer i, integer i, kkkk, , indxindx

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do  i=1,nm2do  i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do  i=1,nm2do  i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( n1, buff_id ) = u( n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len,  buff_id )= u( i1,n2,  buff_id )= u( i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,n3, buff_id ) = u( i1,i2,n3--1)1)

enddoenddo

enddoenddo

endifendif

dir = dir = --11

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id ) = u( 2,  i2,i3)) = u( 2,  i2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,  2,i3), buff_id ) = u( i1,  2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,2), buff_id ) = u( i1,i2,2)

enddoenddo

enddoenddo

endifendif

do  i=1,nm2do  i=1,nm2

buff(i,4) = buff(i,3)buff(i,4) = buff(i,3)

buff(i,2) = buff(i,1)buff(i,2) = buff(i,1)

enddoenddo

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

returnreturn

endend



param coeff: domain(1) = [0..3]; // for 4 unique weight values

param Stencil: domain(3) = [-1..1, -1..1, -1..1]; // 27-points

function rprj3(S, R) {

param w: [coeff] float = (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float

= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce [off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

paramparam coeffcoeff: : domaindomain(1) = [0..3]; // (1) = [0..3]; // forfor 4 unique weight values4 unique weight values

paramparam Stencil: Stencil: domaindomain(3) = [(3) = [--1..1, 1..1, --1..1, 1..1, --1..1]; // 1..1]; // 2727--pointspoints

functionfunction rprj3(S, R) {rprj3(S, R) {

paramparam w: [w: [coeffcoeff] ] floatfloat = (/0.5, 0.25, 0.125, 0.0625/);= (/0.5, 0.25, 0.125, 0.0625/);

paramparam w3d: [(i,j,k) w3d: [(i,j,k) inin Stencil] Stencil] floatfloat

= w((i!=0) + (j!=0) + (k!=0));= w((i!=0) + (j!=0) + (k!=0));

constconst SD = S.Domain,SD = S.Domain,

RstrRstr = R.stride;= R.stride;

S = [S = [ijkijk inin SD] SD] sumsum reducereduce [off [off inin Stencil]Stencil]

(w3d(off) * (w3d(off) * R(ijkR(ijk + + RstrRstr*off));*off));

}}

Chapel 3D NAS MG Stencil rprj3

function rprj3(S,R) {function rprj3(S,R) {

const Stencil: domain(3) = [const Stencil: domain(3) = [--1..1, 1..1, --1..1, 1..1, --1..1],         // 1..1],         // 2727--pointspoints

w: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/),       // ww: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/),       // weightseights

w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));

forallforall ijkijk in S.domain doin S.domain do

S(ijkS(ijk) = sum reduce [off in Stencil] (w3d(off) * ) = sum reduce [off in Stencil] (w3d(off) * R(ijkR(ijk + + R.strideR.stride*off));*off));

}}



Large-scale hierarchical architectural parallelism
0tens of  thousands to hundreds of thousands of processors 
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by 
the architecture?
0automatic parallelization and locality management are not 

powerful enough to provide a general efficient solution 
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Large-scale hierarchical architectural parallelism
0tens of  thousands to hundreds of thousands of processors 
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by 
the architecture?
0automatic parallelization and locality management are not 

powerful enough to provide a general efficient solution 
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Productivity Challenges for Peta-Scale Systems
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HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

Languages for High Performance Computing



PGAS Language Overview

Partitioned Global Address Space (PGAS) languages 
are based on the Single-Program-Multiple-Data (SPMD) 
model

Providing a shared-memory, global view, of data, 
combined with support for locality
0global address space is logically partitioned, mapped to processors
0single-sided shared-memory communication
0local and remote references distinguished in the source code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified 
Parallel C (UPC), Titanium

Partitioned Global Address Space (PGAS) languages 
are based on the Single-Program-Multiple-Data (SPMD) 
model

Providing a shared-memory, global view, of data, 
combined with support for locality
0global address space is logically partitioned, mapped to processors
0single-sided shared-memory communication
0local and remote references distinguished in the source code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified 
Parallel C (UPC), Titanium

Support for global view of data, but local control



Example: PGAS vs. HPCS
Setting up a block-distributed array in Titanium vs. Chapel

myBlock

blocksP0

myBlock

blocksP1

myBlock

blocksP2

// determine parameters of local block:
Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell = startCell + (numCellsPerBlockSide-[1,1,1]);

//create local myBlock array:
double [3d] myBlock = new double[startCell:endCell];

//build the distributed structure:
//declare blocks as 1D-array of references (one element per processor)
blocks.exchange(myBlock);

Source: K.Yelick et al.: Parallel Languages and Compilers: Perspective from the Titanium Experience

const D: domain(3)  =  [l1..u1,l2..u2,l3..u3]
distributed(block,block,block);

…
var A: [D] real;
…

Titanium Code Fragment Chapel Code Fragment

Titanium: a dialect of Java that supports distributed multi-dimensional arrays,
iterators, subarrays, and synchronization/communication primitives



High-Productivity Computing Systems (HPCS) is a DARPA-sponsored 
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel   (Cascade Project, led by Cray Inc.)
0 X10        (PERCS Project, led by IBM)
0 [Fortress (HERO Project [until 2006], led by Sun Microsystems)]

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction 

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

High-Productivity Computing Systems (HPCS) is a DARPA-sponsored 
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel   (Cascade Project, led by Cray Inc.)
0 X10        (PERCS Project, led by IBM)
0 [Fortress (HERO Project [until 2006], led by Sun Microsystems)]

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction 

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

HPCS Languages 
global view of data, global control



Chapel Language Concepts
http://chapel.cs.washington.edu

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales 

Close relationship to mainstream languages
0object-oriented
0modules for Programming-in-the-Large

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales 

Close relationship to mainstream languages
0object-oriented
0modules for Programming-in-the-Large



domain

domain

align data

distribute
data

work
align data with work

(affinity)

distribute
work

Aspects of Locality

Locale Set

Locale: an abstract    
unit of locality                



Data Distributions Can Be …

or irregular, possibly depending
on runtime information:

regular, and easy
to deal with in the
compiler/runtime

system:



Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays 

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95, etc.)
0sparse subsets of Cartesian products
0sets of  object instances, e.g., for graph-based data structures

Iterators based on domains

Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays 

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95, etc.)
0sparse subsets of Cartesian products
0sets of  object instances, e.g., for graph-based data structures

Iterators based on domains

Domains



locale view: a logical view for a set of locales

distribution: a mapping of an index set to a locale view

array: a map from an index set to a collection of variables

Domains and Distributions in Context

index sets: Cartesian products, sparse, sets 

Source: Brad Chamberlain (Cray Inc.)



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)=[0..n+1,0..n+1] distributed(block,block)on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real; /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (i,j) in D {  /* parallel iteration over domain D */

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)…distributed(block,block) on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real;

A(0,1..n) = 1.0;

do {
forall (i,j) in D {

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Locale Grid L

Key Features
•global view of data/control
•explicit parallelism (forall)
•high-level locality control
•NO explicit communication
•NO local/remote distinction

in source code



Chapel’s Framework for                         
User-Defined Distributions

Provides functionality for: 
0distributing index sets across locales
0arranging data within a locale 
0defining specialized distribution libraries

This capability is in its effect similar to function 
specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Provides functionality for: 
0distributing index sets across locales
0arranging data within a locale 
0defining specialized distribution libraries

This capability is in its effect similar to function 
specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices



Locality Control in Chapel: Basic Concepts

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1. naïve use of a predefined library distribution (block, cyclic, indirect,…)
2. specification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3.   specification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1.1. nanaïïve use of a predefined library distribution (block, cyclic, indive use of a predefined library distribution (block, cyclic, indirect,rect,……))
2.2. specification of a distribution byspecification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3.   specification of a distribution by global mapping andspecification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions



User-Defined Distributions:
Global Mapping

class MyC: Distribution {
const z:int;                                /* block size */
const ntl:int;                              /* number of target locales*/

function map(i:index(source)):locale {      /* global mapping for MyC */
return Locales(mod(ceil(i/z-1)+1,ntl));

}

class MyB: Distribution {
var bl:int = ...;                           /* block length */

function map(i: index(source)):locale {     /* global mapping for MyB */
return Locales(ceil(i/bl));

}
}

const D1C: domain(1) distributed(MyC(z=100))=1..n1;
const D1B: domain(1) distributed(MyB) on Locales(1..num_locales/10)=1..n1;
var A1: [D1C] real;
var A2: [D1B] real;

/* declaration of distribution classes MyC and MyB: */

/* use of distribution classes MyC and MyB in declarations: */



Example: Banded Distribution

1

2 4 81 3 5 6 7 9j

3

5

6

7

8

9

2

4

i

d 2 3 4
10
11

12

13

14

15

16

17
18

1

2

3

4

1

2

5 6 7 8 9 Diagonal A/d = { A(i,j) | d=i+j }

bw = 3  (bandwidth)

p=4 (number of locales)

Distribution—global map:

Blocks of bw diagonals are  
cyclically mapped to locales

Layout:
Each diagonal is represented
as a one-dimensional dense  
array. Arrays in a locale are   
referenced by a pointer array
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const D: domain(2)=[1..m,1..n];
const DD: domain(D) sparse(CRS)= …;
distribute(DD,Block_CRS); 
var AA: [DD] real;

…

Example
Matrix-Vector Multiplication (sparse CRS)



param n_spe = 8;                   /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale;       /* declaration of SPE array */ 

var A: [1..m,1..n] real distributed(block,*) on SPE;
var x: [1..n] real replicated           on SPE;
var y: [1..m]      real distributed(block)   on SPE;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

(original)(original)
ChapelChapel
versionversion

Example:  Heterogeneous Distributions
Matrix-Vector Multiply on the Cell

var A: [1..m,1..n] real;
var x: [1..n] real;
var y: [1..m]      real;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

Chapel withChapel with
(implicit)(implicit)

heterogeneous  heterogeneous  
semanticssemantics

A

A1
A2

A8

A3
A4
A5
A6
A7

y1
y2
y3
y4
y5
y6
y7
y8

y

x1
x2

xm

SPEk local memory (k=4)

x

PPE  Memory

A1
A2

A8

A3
Ak
A5
A6
A7

y1
y2
y3
yk
y5
y6
y7
y8

x1
x2

xm

x

SPE1

SPE2

SPE3

SPE5

SPE6

SPE7

SPE8

SPE4

Ak: k-th block of rows
yk: k-th block of elements
xk: k-th element

yA



Example: Nested Task and Data Parallelism

! In task2:
var A:[m1,m2]float distributed(…)on …;
…

forall (i,j) in A do … Locale Grid L

s  p  a  r  e  s

task2 task3

! In task3:
var B:[m]… distributed(…)on …;
…

forall k in B do …
task1 task4

task4task1

task2

task3
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Suprenum Project (Bonn University)
First translator

Fortran 77 + data distribution spec Message Passing Fortran

(Michael Gerndt’s Ph.D. work, 1989)

Compilation/Runtime Technology for irregular 
distributions developed in the context of Fortran D, 
Vienna Fortran, HPF-2, and other approaches in the
1990s

Architecture/Application Adaptive Compilation and 
Runtime Technology

Introspection Technology

SuprenumSuprenum Project (Bonn University)Project (Bonn University)
First translatorFirst translator

Fortran 77 + data distribution specFortran 77 + data distribution spec Message Passing FortranMessage Passing Fortran

(Michael (Michael GerndtGerndt’’ss Ph.D. work, 1989)Ph.D. work, 1989)

Compilation/Runtime Technology for irregular Compilation/Runtime Technology for irregular 
distributions developed in the context of Fortran D, distributions developed in the context of Fortran D, 
Vienna Fortran, HPFVienna Fortran, HPF--2, and other approaches in the2, and other approaches in the 
1990s1990s

Architecture/Application Adaptive Compilation and 
Runtime Technology

Introspection Technology

Compiler/Runtime Technology
for High-Level Locality Management  



Inspector/Executor Method 
(Koelbel, Mehrotra, Saltz)

forall i in D on home(c(k(i))) independent {
y(k(i)) = x(i) + c(k(i)) * z(k(i))

}

Generated code for processor p

INSPECTOR:
Loop analysis: determine iteration sets and for all p’ all sets RCV(p,p’) of

data elements owned by p’ and accessed in p   
Compute send sets: SENDS(p.p’) of  data elements that need to be sent from p to p’

for all p’

EXECUTOR:
Send: for all p’ such that SENDS(p.p’) is non-empty send all data in SENDS(p,p’)

to p’
Execute local iterations
Receive: for all p’ such that RCV(p,p’) is non-empty receive data in RCV(p,p’) into

a local TEMP
Execute non-local iterations locally



Code generation technology inspired by ATLAS 
and similar systems
Hybrid approach
0model-guided: static models of architecture, profitability

these are the conventional methods of compiler analysis
for theoretical and practical reasons results are in general sub-optimal

0empirical optimization using actual execution of 
parameterized code, intelligent search 

Exploit complementary strengths of both methods: 
0static compiler technology reduces search space by 

pruning unprofitable solutions
0empirical data provide accurate measure of optimization 

impact
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Architecture- and Application-Adaptive
Compilation and Runtime Technology  

Note: Our HPDC conference paper describes this approach in detail
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High Performance Computing (HPC) and Embedded 
Computing (EC) have been traditionally at the extremes 
of the computational spectrum

However, future HPC, EC, and HPEC systems will need 
to address many similar issues (at different scales):
0multi-core as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing (HPC) and Embedded 
Computing (EC) have been traditionally at the extremes 
of the computational spectrum

However, future HPC, EC, and HPEC systems will need 
to address many similar issues (at different scales):
0multi-core as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing and
Embedded Computing: Common Issues 



More than 50 NASA Missions Explore 
Our Solar System

Ulysses studying the Ulysses studying the 
sunsun

Spitzer studying stars and Spitzer studying stars and 
galaxies in the infraredgalaxies in the infrared

Two Voyagers on an Two Voyagers on an 
interstellar missioninterstellar mission

Cassini studying SaturnCassini studying Saturn

QuikScatQuikScat, Jason 1, CloudSat, and GRACE  , Jason 1, CloudSat, and GRACE  
(plus ASTER, MISR,  AIRS, MLS and TES (plus ASTER, MISR,  AIRS, MLS and TES 

instruments) monitoring Earth.instruments) monitoring Earth.

GALEX surveying galaxies GALEX surveying galaxies 
in the ultravioletin the ultraviolet

Mars Odyssey, rovers Mars Odyssey, rovers 
““SpiritSpirit”” and and ““OpportunityOpportunity””

studying Marsstudying Mars

Aqua studying EarthAqua studying Earth’’s s 
oceansoceans

Aura studying EarthAura studying Earth’’s s 
atmosphereatmosphere Hubble studying the universeHubble studying the universe

Chandra studying the Chandra studying the 
xx--ray universeray universe

CALIPSO studying EarthCALIPSO studying Earth’’s s 
climateclimate

MESSENGER on its way to MESSENGER on its way to 
MercuryMercury

New Horizons on its New Horizons on its 
way to Plutoway to Pluto



Radiation
0Total Ionizing Dose (TID)—amount of ionizing radiation over time: 

can lead to long-term cumulative degradation, permanent damage     
0Single Event Effects—caused by a single high-energy particle 

traveling through a semiconductor and leaving a ionized trail
Single Event Latchup (SEL)—catastrophic failure of the device (prevented by 
Silicon-On-Insulator (SOI) technology)
Single Event Upset (SEU) and Multiple Bit Upset (MBU)—change of bits in 
memory: a transient effect, causing no lasting damage

Temperature
0wide range (from -170 C on Europa to >400 C on Venus)
0short cycles (about 50 C on MER)

Vibration
0launch
0Planetary Entry, Descent, Landing (EDL)
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Temperature
0wide range (from -170 C on Europa to >400 C on Venus)
0short cycles (about 50 C on MER)

Vibration
0launch
0Planetary Entry, Descent, Landing (EDL)

Space Challenges: Environment
Constraints on Spacecraft Hardware



Bandwidth
06 Mbit/s maximum, but typically much less (100 b/s)
0spacecraft transmitter power less than light bulb in 

a refrigerator

Latency (one way)
020 minutes to Mars
013 hours to Voyager 1

Navigation
0Position
0Velocity
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0spacecraft transmitter power less than light bulb in 
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Latency (one way)
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013 hours to Voyager 1

Navigation
0Position
0Velocity

Space Challenges: Communication and Navigation
Constraints on mission operations



Neptune Triton 
Explorer

Europa Astrobiology 
Laboratory

Titan ExplorerEuropa

Mars Sample Return

Explorer            

NASA/JPL: Potential Future Missions
Artist Concept



New Requirements

New applications and the limited downlink to

Earth lead to two major new requirements:

1. Autonomy

2. High-Capability On-Board Computing

Such missions require on-board computational power 
ranging from tens of Gigaflops to hundreds of Teraflops.
Emerging multi-core technology provides this capability.



The Traditional Approach will not Scale

The traditional approach to space-borne computing is 
based on radiation-hardened processors and fixed 
redundancy (e.g.,Triple Modular Redundancy—TMR)
0Current Generation (Phoenix and Mars Science Lab –’09 Launch)

Single BAE Rad 750 Processor
256 MB of DRAM and 2 GB Flash Memory (MSL)
200 MIPS peak, 14 Watts available power (14 MIPS/W)

Radiation-hardened processors today lag commercial 
architectures by a factor of up to 100
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Multi-Core Systems
Will Provide the Required Capability

Tile64  (Tilera Corporation, 2007)
064 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0170-300mW per core; 600 MHz – 1 GHz 
0192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: a radiation-hardened version                                    
of Tile64  (announced for 2011)
0currently in development at Boeing Corporation
049 cores, arranged in a 7X7 grid
070 GOPS at max power of 28W 
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High-Capability On-Board System: 
A Hybrid Approach



Transient Faults

SEUs and MBUs are radiation-induced transient hardware 
errors, which may corrupt software in multiple ways:
0 instruction codes and addresses
0user data structures
0synchronization objects
0protected OS data structures
0synchronization and communication

Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM
0control flow errors
0unwarranted exceptions
0hangs and crashes
0synchronization  and communication faults
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Introspection…
provides dynamic monitoring, analysis, and feedback, 
enabling system to become self-aware and context-aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threads

can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis

IntrospectionIntrospection……
provides provides dynamicdynamic monitoring, analysis, and feedback, monitoring, analysis, and feedback, 
enabling system to become selfenabling system to become self--aware and contextaware and context--aware: aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threadsexploits adaptively the available threads

can be applied to different scenarios, including:can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis

This makes introspection technology
applicable to on-board computing as
well as to large-scale supercomputing

A Framework for Introspection



An Introspection Module (IM)
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Focus of this talk was on high-productivity general-purpose languages
0data parallelism—regular or irregular—is the main source of scalable 

parallelism
0successful, industrial-strength implementations still under development 

Research challenges remain
0performance porting of legacy applications
0 integration of codes in a multi-language-multi-paradigm environment
0architecture- and application-adaptive compiler/runtime technology
0 intelligent tools for performance tuning, fault tolerance, power management

Domain-specific approaches represent viable high-level alternatives

Heterogeneous systems and thread/task parallelism
0many approaches exist, almost all at a low level
0explicit thread parallelism unmanageable for average programmer (E. Lee)
0abstractions needed that concisely express typical patterns reliably
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Conclusion
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