
The Hadoop Distributed File System (HDFS) has been widely adopted to build cloud
storage systems. It provides reliable storage and high throughput access to large-scale
data by Map/Reduce parallel applications.

Based on data access patterns, the data in HDFS is classified into three types:
Hot data: the popular data, which means the data receives not only a large
number of concurrent accesses, but also a high intensity of access.
Cold data: the unpopular data that is rarely accessible.
Normal data: the rest

Data replication has been widely used as a means of providing high performance,
reliability and availability. Triplication policy has been favored in HDFS not only
because it can be easily implemented, but also for its high performance, and
reliability. However, there have been two problems:

In a large and busy HDFS cluster, the hot data could be accessed by many
distributed clients concurrently. Replicating hot data only on three different nodes
is not enough to avoid contention for datanodes storing the hot data.
The triplication policy comes with a high overhead cost in terms of management
for the cold data. Too many replicas may not significantly improve availability, but
bring unnecessary expenditure instead. The management cost of cold data,
including storage and network bandwidth, will significantly increase with the high
number of replica.

In view of these issues, we designed and implemented ERMS, an elastic replica
management system for HDFS. ERMS introduces an active/standby storage model,
takes advantage of a high-performance complex event processing (CEP) engine to
distinguish the real-time data types, and brings in an elastic replication policy for the
different types of data. ERMS uses Condor to increase the replication number for hot
data in standby nodes, and to remove the extra replicas after the data cooling down.
The erasure codes could be used to save storage space and network bandwidth when
the data becomes cold data.

INTRODUCTION

Elastic Replication Management System for HDFS

EXPERIMENTAL EVALUATION
We evaluated ERMS in a private cluster with one namenode and fifteen datanodes
(ten active nodes and five standby nodes) of commodity computer.
We implemented ERMS in Hadoop-20, which is Facebook's real-time distributed
Hadoop, modified the replica placement mechanism and added configuration
parameters to suit the ERMS.

CONCLUSION
We present the design and implement of ERMS, an elastic replica management system
for HDFS that seeks to increase data locality by replicating the hot data while keeping
a minimum number of replicas for the cold data. ERMS dynamically adapt to changes
in data access patterns and data popularity, and impose a low network overhead. The
active/standby storage model and replica placement strategy used by ERMS would
enhance the reliability and availability of data.
In the future, we plan to :

investigate more effective solutions to detect and predict the real-time data types.
evaluate ERMS in real cloud systems, which are provide by Tencent and HuaWei.

CONTACT
Author: Zhendong Cheng
Email: zhendong.cheng@jsi.buaa.edu.cn
Sino-German Joint Software Institute
BeiHang University (BUAA)
No.37 XueYuan Road, HaiDian District,
Beijing, P.R.China, 100191

System Architecture

Sino-German Joint Software Institute, Beihang University, China
University of Wisconsin–Madison, USA

Tencent Research, China

Zhendong Cheng, Zhongzhi Luan, You Meng, Depei Qian, Alain Roy, Gang Guan

ERMS: Elastic Replication Management System for HDFS

ACKNOWLEDGMENT

This work was partially supported by the National High Technology Research and
Development Program ("863"Program) of China under the grant No. 2011AA01A203. ERMS introduces an

active/standby storage model.
This model classifies the store
nodes into two types: active
nodes and standby nodes.
We use an active/standby
storage model. Standby nodes
might be better than active
nodes when the active nodes
are heavily used. The standby
nodes only store the extra
replica of hot data.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

600

700

800

900

1000

C
D

F

Time (h)

 CDF

St
or

ag
e

U
til

iz
at

io
n

(G
B

)

Time (h)

 Vanilla Hadoop
 ERMS

HDFS is the basic storage
appliance. The Data Judge
Module obtains the system
metrics from HDFS clusters and
uses CEP to distinguish current
data types in real-time.
According to the different types
of data, the manager of ERMS
could schedule replication
manager tool and erasure coding
tool to manage the replicas of
data.
Condor would be an good choice
for the manager.

The architecture of ERMS is showed in Fig. 1. It automatically manages the replication
number and replica placement strategy in HDFS clusters.

Figure 1: System Architecture of ERMS

Active/Standby Storage Model

Figure 2: Active/Standby Storage Model

Time window is one of the major features of CEP systems. ERMS makes use of CEP
analyzing HDFS audit logs to tell the data types in HDFS. Taking advantage of the time
window tw of CEP, ERMS obtains concurrent accesses number τ within the time tw and
then distinguishes the real-time data types. The data is hot data or cold data if τ is
higher than τM or lower than τm.

We run jobs synthesized from the SWIM, which provides one mouth job trace and
replay scripts of a Facebook 3000-machine production cluster trace. We evaluate data
locality and average reading throughput of these jobs under different thresholds
(τM1>τM2>τM3). Data locality and reading throughput are two critical metrics for
performance of HDFS. Data locality could reduce pressure on the network fabric. The
results show that ERMS could effectively improve data locality and reading throughput,
as shown in Fig. 3. The threshold τM is also an important parameter. It is a tradeoff
between system performance and storage cost.

We also experiment with erasure codes. For the cold data, which concurrent accesses
number τ is lower than τm, we use Reed Solomon codes to encode it, with a
replication factor of one and four coding parities. The results show that this erasure
codes doesn’t heart data reliability and reduce storage overhead.

Figure 3: The Performance of ERMS

Figure 4: CDF of Data Accessing and Storage utilization

FIFO Fair
0.0

0.2

0.4

0.6

0.8

1.0

D
at

a
Lo

ca
lit

y
of

 J
ob

s

MapReduce Schedule

 Vanilla Hadoop
 ERMS_ 1

 ERMS_ 2

 ERMS_ 3

FIFO Fair
0

20

40

60

80

100
 Vanilla Hadoop
 ERMS_ 1

 ERMS_ 2

 ERMS_ 3

A
ve

ra
ge

 T
hr

ou
gh

pu
t(M

B/
s)

MapReduce Schedule

