Introduction:
- Primary Goal: secure virtual execution environment tailored for a specific application
- Application-specific trusted computing base (TCB) size minimization in a virtualized environment is possible
- VM size and composition matters: security (TCB, attack surface) and performance (storage, memory, CPU)

Approach:
- From declarative descriptions to systems deployed as VMs.

1. Capture user and application requirements in the form of a declarative description D

 Approach:
 Gather user/application requirements as a declarative description (D). D describes an execution environment and other requirements such as trust domains and storage issues. Steps 2-4 focus on the execution environment.

 Challenges:
 Language Design, Profiling Techniques

2. Analyze D to give a system constraint described as C

 Approach:
 Consult the ‘Global Up-to-date State’ – GUS (patches, updates, versions, standards as models…) to create a more precise description of an execution environment for the application.

 Challenges:
 GUS Representation, Semantic Reasoning

3. Create a security optimized machine M based on C

 Approach:
 Use constraints in C to configure an OS, creating a minimal ‘Trusted Computing Base’ in the application’s execution environment M – e.g. include only relevant drivers or libraries.

 Challenges:
 Constraint Satisfaction/Optimization Approaches, Implementations

4. Deploy M as a target T

 Approach:
 Pack and deploy M on different target cloud/HPC platforms.

 Challenges:
 Performance Issues, Predictability, Scalability, Interoperability

Advantages
- Flexibility.
- Reusability.
- Portability.
- Ease of Use.

Work in Progress
- Model refinement and description techniques.