

Exploring the Capabilities of a Massively Scalable, Compute-in-Storage Architecture

Blake G. Fitch

bgf@us.ibm.com

- Blake G. Fitch
- Robert S. Germain
- Michele Franceschini
- Todd Takken
- Lars Schneidenbach
- Bernard Metzler
- Heiko J. Schick
- Peter Morjan
- Ben Krill
- T.J. Chris Ward
- Michael Deindl
- Michael Kaufmann
- Marc Dombrowa
- David Satterfield
- Joachim Fenkes
- Ralph Bellofatto
- and many other associates and contributors.

Scalable Data-centric Computing

Massive Scale Data and Compute

Blue Gene/Q: A Quick Review

Dive Orea Astive Oteres

Integrates processors, memory and networking logic into a single chip

- 360 mm² Cu-45 technology (SOI)
- 16 user + 1 service PPC processors
 - -plus 1 redundant processor
 - all processors are symmetric
 - -11 metal layer
 - -each 4-way multi-threaded
 - -64 bits
 - 1.6 GHz
 - -L1 I/D cache = 16kB/16kB
 - -L1 prefetch engines
 - each processor has Quad FPU (4-wide double precision, SIMD)
 - peak performance 204.8 GFLOPS @ 55 W
- Central shared L2 cache: 32 MB – eDRAM
 - multiversioned cache supports transactional memory, speculative execution.
 - supports scalable atomic operations
- Dual memory controller
 - 16 GB external DDR3 memory
 - 42.6 GB/s DDR3 bandwidth (1.333 GHz DDR3) (2 channels each with chip kill protection)

Chip-to-chip networking

- -5D Torus topology + external link
 - \rightarrow 5 x 2 + 1 high speed serial links
- -each 2 GB/s send + 2 GB/s receive
- DMA, remote put/get, collective operations
- External (file) IO -- when used as IO chip.
 - PCle Gen2 x8 interface (4 GB/s Tx + 4 GB/s Rx)
 - re-uses 2 serial links
 - interface to Ethernet or Infiniband cards

HPC Applications Running on Blue Gene/Q at Release

... greatly enhanced by system level co-design

Application	Owner	Application	Owner	Application	Owner	
CFD Alya System	Barcelona SC	DFT iGryd	Jülich	BM: SPEC2006, SPEC openmp	SPEC	
CFD (Flame) AVBP	CERFACS Consortium	DFT KKRnano	Jülich	BM: NAS Parallel Benchmarks	NASA	
CFD dns3D	Argonne National Lab	DFT ls3df	Argonne National Lab	BM: RZG (AIMS,Gadget,GENE, GROMACS,NEMORB,Octopus, Vertex)	RZG	
CFD OpenFOAM	SGI	DFT PARATEC	NERSC / LBL	Coulomb Solver - PEPC	Jülich	
CFD NEK5000, NEKTAR	Argonne, Brown U	DFT CPMD	IBM/Max Planck	MPI PALLAS	UCB	
CFD OVERFLOW	NASA, Boeing	DFT QBOX	LLNL	Mesh AMR	CCSE, LBL	
CFD Saturne	EDF	DFT VASP	U Vienna & Duisburg	PETSC	Argonne National Lab	
CFD LBM	Erlanger-Nuremberg	Q Chem GAMESS	Ames Lab/Iowa State	MpiBlast-pio Biology	VaTech / ANL	
MD Amber	UCSF	Nuclear Physics GFMC	Argonne National Lab	RTM – Seismic Imaging	ENI	
MD Dalton	Univ Oslo/Argonne	Neutronics SWEEP3D	LANL	Supernova la FLASH	Argonne National Lab	
MD ddcMD	LLNL	QCD CPS	Columbia U/IBM	Ocean HYCOM	NOPP / Consortium	
MD LAMMPS	Sandia National Labs	QCD MILC	Indiana University	Ocean POP	LANL/ANL/NCAR	
MD MP2C	Jülich	Plasma GTC	PPPL	Weather/Climate CAM	NCAR	
MD NAMD	UIUC/NCSA	Plasma GYRO (Tokamak)	General Atomics	Weather/Climate Held-Suarez Test	GFDL	
MD Rosetta	U Washington	KAUST Stencil Code Gen	KAUST	Climate HOMME	NCAR	
DFT GPAW	Argonne National Lab	BM:sppm,raptor,AMG,IRS,sphot	Livermore	Weather/Climate WRF, CM1	NCAR, NCSA	

Accelerating Discovery and Innovation in:

Materials Science

Silicon Design

Next Gen Nuclear

High Efficiency Engines

Oil Exploration

Life Sciences

Whole Organ Simulation

(a) Graph of a Local Gnutella P2P

(b) Graph of Research Co-authorship

A particularly important analytics kernel

- Random memory access pattern
 Very fine access granularity
- High load imbalance in
 - Communication and
 - Computation
- Data dependent communications patterns

Blue Gene features which helped:

- cost-scalable bisectional bandwidth
- low latency network with high messaging rates
- large system memory capacity
- low latency memory systems on individual nodes

June '12: www.graph500.org/results june 2012

June 2012

Rank	Installation Site	Machine	Number of nodes	Number of cores	Problem scale	GTEPS
1	DOE/SC/Argonne National Laboratory	Mira/BlueGene/Q	32768	524288	38	35 <mark>41</mark> .00
1	LLNL	Sequoia/Blue Gene/Q	32768	52 <mark>4</mark> 288	38	3541.00
2	DARPA Trial Subset, IBM Development Engineering	Power 775, POWER7 8C 3.836 GHz	1024	32768	35	508.05
3	Information Technology Center, The University of Tokyo	Oakleaf-FX (Fujitsu PRIMEHPC FX 10)	4800	76800	38	358.10
4	GSIC Center, Tokyo Institute of Technology	HP Cluster Platform SL390s G7 (three Tesla cards per node)	1366	16392	35	317.09
5	Brookhaven National Laboratory	BLUE GENE/Q	1024	16384	34	294.29
6	DOE/SC/Argonne National Laboratory	Vesta/BlueGene/Q	1024	16384	34	292.36
7	NASA-Ames / Parallel Computing Lab, Intel Labs	Pleiades - SGI ICE-X, dual plane hypercube FDR infiniband, E5-2670 "sandybridge"	1024	16 <mark>3</mark> 84	34	270.33
8	NERSC/LBNL	XE6	4817	115600	35	25 <mark>4.</mark> 07
9	NNSA and IBM Research, T.J. Watson	NNSA/SC Blue Gene/Q Prototype II	4096	65536	32	236.00
10	GSIC Center, Tokyo Institute of Technology	TSUBAME 2.0 (CPU only)	1366	16392	36	202.68

BG/Q TCO – Internet Scale Cost-structure By the Rack

Active Storage Concept: Scalable, Solid State Storage with BG/Q

"How to" guide:

Remove 512 of 1024 BG/Q compute nodes in rack – to make room for solid state storage

HSA

Integrate 512 Solid State (Flash+) Storage Cards in BG/Q compute node form factor

System Software Environment

- Linux OS enabling storage + embedded compute
- OFED RDMA & TCP/IP over BG/Q Torus failure resilient
- Standard middleware GPFS, DB2, MapReduce, Streams

Active Storage Target Applications

- Parallel File and Object Storage Systems
- Graph, Join, Sort, order-by, group-by, MR, aggregation
- Application specific storage interface

PCle Flash Board

TOW

All-to-all throughput roughly

equivalent to Flash throughput

Flash Storage	2012 Targets
Capacity	2 TB
I/O Bandwidth	2 GB/s
IOPS	200 K

BGAS Rack Targets

512
1 PB
1 TB/s
100 Million
104 TF
512 GB/s
512

... scale it like BG/Q.

- IO nodes have non-volatile memory as storage and external Ethernet
- Compute nodes not required for data-centric systems but offer higher density for HPC
- Compute nodes and IO nodes likely have Blue Gene type nodes and torus network
- IO Node cluster supports "file systems" in non-volatile memory and on disk
- On-line data does may not leave IO fabric until ready for long term archive
- Manual or automated hierarchical storage manages data object migration among tiers

Blue Gene/Q I/O Node Packaging

Blue Gene Active Storage – 64 Node Prototype

SLURM

13

Linux Based Software Stack For BG/Q Node

•

Active Storage Stack Optimizes Network/Storage/NVM Data Path

- Scalable, active storage currently involves three server side state machines
 - Network (TCP/IP, OFED RDMA), Storage Server (GPFS, PIMD, etc), and Solid State Store (Flash Cntl)
- These state machines will evolve and potentially merge as to better server scalable, data-intensive applications.

---- Area of research

BGAS Full System Emulator -- BGAS on BG/Q Compute Nodes

- Leverages BG/Q Active Storage (BGAS) Environment
 - BG/Q + Flash memory,
 - Linux REHL 6.2
 - standard network interfaces (OFED RDMA, TCP/IP)
 - standard middleware (GPFS, etc)
- BGAS environment + Soft Flash Controller + Flash Emulator
 - SFC breaks the work up between device driver and FPGA logic
 - The Flash emulator manages RAM as storage with Flash access times
- Explore scalable, SoC, SCM (Flash, PCM) challenges and opportunities
 - Work with the many device queues necessary for BG/Q performance
 - Work on the software interface between network and SCM
 - RDMA direct into SCM
- Realistic BGAS development platform
 - Allows development of storage systems that deal with BGAS challenges
 - GPFS-SNC should run
 - GPFS-Perseus type declustered raid
 - Multi-job platform challenges
 - QoS requirements on the network
 - Resiliency in network, SCM, and cluster system software
- Running today: InfoSphere Streams, DB2, GPFS, Hadoop, MPI, etc...

BGAS Platform Performance – Emulated Storage Class Memory

- Software Environment
 - Linux Operating System
 - OFED RDMA on BG/Q Torus Network
 - Fraction of 16 GB DRAM used to emulate Flash storage (RamDisk) on each node
 - GPFS uses emulated Flash to create a global shared file system
- Tests
 - IOR Standard Benchmark
 - all nodes do large contiguous writes tests A2A BW internal to GPFS
 - All-to-all OFED RDMA verbs interface
 - MPI All-to-all in BG/Q product environment
 a light weight compute node kernel (CNK)
- Results
 - IOR used to benchmark GPFS
 - 512 nodes → 0.8 TB/s bandwidth to emulated storage
- Network software efficiency for all-to-all
 - BG/Q MPI on CNK: 95%
 - OFED RDMA verbs 80%
 - GPFS IOR 40% 50% (room to improve!)

Massive Scale Data and Compute

- Key/value object store
 - Similar in function to Berkeley DB
 - Support for "partitioned datasets" named containers for groups of K/V records
 - Variable length key, variable length value
 - Record values maybe appended to, or accessed/updated by byte range
 - Data consistency enforced at the record level by default
- In-Memory DRAM and/or Non-volatile memory (with migration to disk supported).
- Other functions
 - Several types of interators from generic next-record to "streaming, parallel, sorted" keys
 - Sub-record projections
 - Bulk insert
 - Server controlled embedded function -- could include further push down into FPGA
- Parallel Client/Server Storage System
 - Server is a state machine is driven by OFED RDMA and Storage events
 - MPI client library wraps OFED RDMA connections to servers
- Hashed data distribution
 - Generally private hash to avoid data imbalance in servers
 - Considering allowing user data placement with a maximum allocation at each server
- Resiliency
 - Currently used for scratch storage which is serialized into files for resiliency
 - Plan to enable scratch, replication, and network raid resiliency on PDS granularity

Classic parallel IO stack to access external storage

Compute-in-storage

Apps directly connect

Compute-in-Storage: HDF5 Mapped to a Scalable Key/Value Inteface

- Storage-embedded parallel programs can use HDF5
 - Many scientific packages already use HDF5 for I/O
- HDF5 mapped scalable key/value storage (SKV)
 - client interface:
 - native key/value
 - tuple representation of records
 - MPI/IO (adio)
 - --> support for high-level APIs: HDF5
 - --> broad range of applications
- SKV provides lightweight direct access to NVM
- client-server communications use OFED RDMA
- Scalable Key/Value storage (SKV)
 - Design
 - stores key/value records in (non-volatile) memory
 - distributed parallel client-server
 - thin server core: mediate between network and storage
 - client access: RDMA only
 - Features:
 - non-blocking requests (deep queues)
 - global/local iterators
 - access to partial values (insert/retrieve/update/append)
 - tuple-based access with server side predicates and projection

From: http://www.it.uu.se/research/conf/SCSE07/material/Gropp.pdf

•Scheme denormalization is often done for query acceleration in systems with weak or nonexistant network bisection.

•Strong network bisection enables efficient, ad-hoc table joins allowing data to remain in compact normla form.

Data Size Primary key – 8 bytes Customer id – 8 bytes Date/time – 11 bytes Product id – 8 bytes Store id – 4 bytes Gender – 1 byte Zip code – 9 bytes Phone number – 10 bytes Product name – varchar(128)

Product description – varchar(1024)

© 2013 IBM Corporation

Observations, comments, and questions

- How big are the future datasets? How random are the accesses? How much concurrency in algorithms?
- Heroic programming will be probably be required to make 100,000 node programs work well – what about down scaling?
- A program using a library will usually call multiple interfaces during its execution life cycle – what are the options for data distribution?
- Domain workflow design may not be the same skill as building a scalable parallel operator – what will it will take care to enable these activities to be independent?
- A program using a library will only spend part of its execution time in the library – can/must parallel operators in the library be pipelined or execute in parallel?
- Load balance who's responsibility?
- Are interactive workflows needed? Would it help to reschedule a workflow while a person thinks to avoid speculative runs?
- Operator pushdown how far?
 - There is higher bandwidth and lower latency in the parallel storage array than outside, in the node than on the network, in the storage controller (FPGA) than in the node
 - Push operators close to data but keep a good network around for when that isn't possible

Workflow End User

Workflow definition

Domain Language (scripting?)

Collection of heroically coded parallel operators

Domain Data Model

(e.g. FASTA, FASTQ \rightarrow K/V Datasets)

Global Storage Layer

GPFS, K/V, etc

Memory/Storage Controllers

Support offload to Node/FPGA

Hybrid Non-volatile Memory

DRAM + Flash + PCM?

DOE Extreme Scale: Conventional Storage Planning Guidelines

http://www.nersc.gov/assets/HPC-Requirements-for-Science/HPSSExtremeScaleFINALpublic.pdf

HPC I/O Requirements – 60 TB/s – Drive

Systems	2009	2018	Difference Today & 2018
System peak	2 Pflop/s	1 Eflop/s	O(1000)
Power	6 MW	~20 MW (goal)	
System memory	0.3 PB	32 - 64 PB	O(100)
Node performance	125 GF	1.2 or 15TF	0(10) – 0(100)
Node memory BW	25 GB/s	2 - 4TB/s	O(100)
Node concurrency	12	O(1k) or O(10k)	0(100) – 0(1000)
Total Node Interconnect BW	3.5 GB/s	200-400GB/s (1:4 or 1:8 from memory BW)	O(100)
System size (nodes)	18,700	O(100,000) or O(1M)	0(10) – 0(100)
Total concurrency	225,000	O(billion) + [O(10) to O(100) for latency hiding]	O(10,000)
Storage Capacity	15 PB	500-1000 PB (>10x system memory is min)	0(10) – 0(100)
IO Rates	0.2 TB	60 TB/s	O(100)
MTTI	days	O(1 day)	- O(10)

From Rick Stevens: http://www.exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Steven.pdf

- 60 TB/s bandwidth required
 - Driven by higher frequency check points due to low MTTI
 - Driven by tier 1 file system requirements
 - HPC program IO
 - Scientific analytics at exascale
- Disks:
 - ~100 MB/s per disk
 - ~600,000 disks!
 - ~600 racks???
- Flash
 - ~100 MBps write bandwidth per flash package
 - ~600,000 Flash packages
 - ~60 Flash packages per device
 - ~6 GBps bandwidth per device (e.g. PCIe 3.0 x8 Flash adaptor)
 - ~10,000 Flash devices
- Flash is already more cost effective than disk for performance (if not capacity) at the unit level and this effect is amplified by deployment requirements (power, packaging, cooling)

Conclusion: Exascale class systems will benefit from integration of a large solid state storage subsystem

Torus Networks – Cost-scalable To Thousands Of Nodes

Physical Layout

Packaged Node

- Cost scales linearly with number of nodes
- Torus all-to-all throughput does fall rapidly for very small system sizes
- But, bisectional bandwidth continues to rise as system grows
- A hypothetical 5D Torus with 1GB/s links yields theoretical peak all-to-all bandwidth of: - 1GB/s (1 link) at 32k nodes (8x8x8x8x8)

 - Above 0.5GB/s out to 1M nodes
- Mesh/Torus networks can be effective for data intensive applications where cost/bisection-bw is required

