POW: System-wide Dynamic Reallocation of Limited Power in HPC

Daniel Ellsworth¹, Allen Malony¹, Barry Rountree², Martin Schulz²

Power and Energy

- Different but related ideas
 - Rate vs Quantity
- Conversion:

1 Watt =
$$1 \frac{Joule}{Second}$$

- 1 kWh = 3.6 megajoules
- Infrastructure required for 900 kWh over 1 hour is not the same as 900 kWh over 720 hours.

HPC System

Power Scheduler Invariant

$\forall t, \sum c_i^t \leq \sum a_i^t \leq L$

- System-wide power limit L
- Number of sockets \mathcal{N}
- A time t
 - Power consumed by socket i at time t
- $c_i^t a_i^t$ Power allocated to socket i at time t

Naive Static Strategy

$\forall t, \sum c_i^t \leq \sum a_i^t \leq L$

- LSystem-wide power limit
- Number of sockets n
- A time t
 - Power consumed by socket i at time t
- $c_i^t a_i^t$ Power allocated to socket i at time t

$$a_i^t = \frac{L}{n} \implies \sum c_i^t \le L$$

Power and Runtime

Job Static Strategy

 $\forall t, \sum c_i^t \leq \sum a_i^t \leq L$

- $L \mid$ System-wide power limit
- $n \mid$ Number of sockets
 - A time
- t j_+ j_n c_i^t a_i^t
- Maximum power consumed by a socket for job jNumber of sockets in job j
- Power consumed by socket i at time t
- Power allocated to socket i at time t

$$\forall j, \sum j_+ j_n \leq L \implies \sum c_i^t \leq L$$

Power and Energy

Naive Dynamic Strategy

 $\forall t, \sum c_i^t \leq \sum a_i^t \leq L$

- - $t \mid A time$
- $\begin{array}{c|c} w_i^t & \text{Waste power for socket } i \text{ at time } t \\ c_i^t & \text{Power consumed by socket } i \text{ at time } t \\ a_i^t & \text{Power allocated to socket } i \text{ at time } t \end{array}$

$$\begin{aligned} \forall t, L &= \sum a_i^t \qquad c_i^t + w_i^t = a_i^t \qquad c_i^t \approx c_i^{t+1} \\ w_i^{t+1} &\approx \frac{1}{n} \sum a_i^t - c_i^t \implies a_i^{t+1} \approx c_i^t + w_i^{t+1} \end{aligned}$$

POWsched

procedure MAIN	
while True do	
GETREADINGS	\triangleright Phase 1
ALLOCDOWN	\triangleright Phase 2
ALLOCUP	\triangleright Phase 3
sleep rest of interval	
end while	
end procedure	

50W Static and Dynamic

Time

Static vs Dynamic

Experiment	Runtime	Stddev	Improvement
115W static	278.26	9.57	
115W dynamic	276.24	4.84	0.7%
90W static	284.63	3.20	
90W dynamic	277.13	5.04	2.6%
70W static	323.83	4.90	
70W dynamic	278.02	4.97	14.1%
50W static	407.21	18.00	
50W dynamic	371.92	13.23	8.7%

In Summary

- Power Optimization != Power Bound Enforcement
- Static power allocation may not be optimal
- Dynamic power reallocation can reduce time to solution

Funding Acknowledgement

- Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-669276).
- Work by the University of Oregon is supported by the DOE Office of Science, through a Sub-Contract No. 3F-32643 from the University of Chicago, Argonne, LLC (as operator of Argonne National Laboratory), under Prime Contract No. DE-ACo2-o6CH11357.