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The Power Problem
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Exascale Power Problem
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Hardware Overprovisioning

Worst-case provisioning (traditional):
All nodes can run at peak power simultaneously

Hardware overprovisioning:

 Buy more capacity, limit power per node

* Reconfigure dynamically based on application’s memory
and scalability characteristics

 Moldable applications: flexible in terms of node and core
counts on which they can execute
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Configurations

Good performance relies on choosing an application-

specific configuration

« Number of nodes, cores per node and power per
node, (nxc, p)

In our case, improves performance under a power bound
by 32% (1.47x) on average compared to worst-case

provisioning
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Hardware Overprovisioning Example

SP-MZ CFD kernel, Bound of 3500 W

Configuration Time |Total Power:
(s) CPU & DRAM (W)

Worst-case (20 x 16, 115) 9.10 3250
Overprovisioned (26 x 12, 80) 3.65 3497
/ Utilized all
CPU Power Cap 2.5x Speedup

allocated power
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_______________________________________________________
Resource Management

What is the impact of overprovisioning when
we have a real cluster with multiple users and
several jobs?

Can we utilize the procured power better and
minimize wasted power?
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Power-Aware Scheduling Challenges

User: Users care about fairness and turnaround time

* Fair and transparent job-level power allocation
 Minimize execution time, reduce queue wait time

System: Admins care about utilization and throughput
 Maximize utilization of available nodes and power
 Minimize average turnaround time for job queue
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Resource MAnager for Power (RMAP)

Aimed at future power-constrained systems
Implemented within SLURM

Novel Adaptive policy:

* Uses overprovisioning and power-aware backfilling

* Improves system power utilization and optimizes
execution time under a job-level power bound

 Leads to 19% and 36% faster turnaround times than
baseline Traditional and Naive
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First-Come First Serve Scheduling
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Backfilling
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Insight: Power-Aware Backfilling
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Insight: Power-Aware Backfilling
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RMAP Policies: Inputs

Users request nodes and time

Job-level power bound:
* Fairly allocate power to each job based on the
fraction of total nodes requested

We assume equal priority.
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RMAP Adaptive Policy

* If enough power is available, allocate the best
overprovisioned configuration under the derived job-
level power bound

* Otherwise, allocate a suboptimal overprovisioned
configuration with available power

e Users can specify an optional performance slowdown
threshold for potentially faster turnaround times
 Defaultis no slowdown (0%)
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RMAP Baseline Policies

Traditional Not fair-share, allocates requested nodes with
all cores at full power

Naive Greedily allocates best performing configuration
under derived job-level power bound

*All policies use basic node-level backfilling.
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Experimental Details

Intel Sandy Bridge 64-node cluster
2 sockets per node, 8 cores per socket
e Min:51W, Max: 115 W

Intel RAPL for power measurement and control*

Moldable Applications
e SPhot, NAS-MZ (BT-MZ, SP-MZ and LU-MZ)
* Four synthetic

*DRAM power unavailable
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Evaluation

 SLURM Simulator, 64 nodes, 30 jobs per trace

5 global power bounds
e 6500 W, extremely constrained
e 14000 W, unconstrained

* Poisson process for dynamic job arrival
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Random Trace Results

Random Job Trace 1, 64 nodes
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On average Adaptive with no slowdown does 19% better
than Traditional, 36% better than Naive
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Detailed Results: 6500 W Bound

Extremely power-limited,
128 processors, 50 W per socket with fair-share

Each job requests at least 40 nodes

Average Turnaround Time (s)

Traditional 684
Naive 990
Adaptive, 0% 636 (7% better than Traditional)
Adaptive, 20% 536 (21% better than Traditional)
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Detailed Results: 6500 W Bound
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e 22 of 30 jobs have faster turnaround times than
Traditional
e 21% faster turnaround time (on average)
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RMAP Summary

Adaptive policy
* Uses hardware overprovisioning and power-aware

backfilling
 Leadsto 19% and 36% faster queue turnaround times

than Traditional and Naive
* Improves individual application performance as well as

system throughput
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