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Motivation — HPC Trends

« Huge performance gap
v CPU: extremely fast for generating data
v Disk, Network: very slow to store or transfer data
v Memory: not large enough to hold data
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In-Situ Analysis — What and Why

* Process of transforming data at run time
— Analysis
— Classification
— Reduction
— Visualization
 In-Situ has the promise of
— Saving more information dense data
— Saving I/O or network transfer time
— Saving disk space
— Saving time in analysis
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Key Questions

 How do we decide what data to save?
— This analysis cannot take too much time/memory

— Simulations already consume most available
memory

— Scientists cannot accept much slowdown for
analytics

 How insights can be obtained in-situ?
— Must be memory and time efficient
* What representation to use for data stored in
disks?
— Effective analysis/visualization
— Disk/Network Efficient
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Quick Answers

« How do we decide what data to save?
— Use Bitmaps!

* How Iinsights can be obtained in-situ?
— Use Bitmaps!!

« What representation to use for data stored
on disks?
— Bitmaps!!!
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Specific Issues

Bitmaps as data summarization
— Utilize extra computer power for data reduction
— Save memory usage, disk I/O and network transfer time

In-Situ Data Reduction
— In-Situ generate bitmaps

v Bitmaps generation is time-consuming

v Bitmaps before compression has big memory cost
In-Situ Data Analysis

— Time steps selection
v Can bitmaps support time step selection?
v Efficiency of time step selection using bitmaps
Offline Analysis:
— Only keep bitmaps instead of data
— Types of analysis supported by bitmaps
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Dimension | Value v0 vl vl v2 v3

DO | D1 [1,2] [3. 4] =1 =2 =3 =4
0 0 4 0 1 0 0 0 1
0 1 1 1 0 1 0 0 0
0 2 2 1 0 0 1 0 0
0 3 2 1 0 0 1 0 0
1 0 3 0 1 0 0 1 0
1 1 4 0 1 0 0 0 1
1 2 3 0 1 0 0 1 0
1 3 1 1 0 1 0 0 0

1st Level Indices 2nd Level Indices

« Suitable for floating value by binning small ranges

* Run Length Compression (WAH, BBC)

* Bitmaps can be treated as a small profile of the

data
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In-Situ Bitmaps Generation

« Parallel index generation
— Save the data loading cost
— Multi-Core based index generation

« Core allocation strategies

— Shared Cores
v" Allocate all cores to simulation and bitmaps generation
v  Executed in sequence

— Separate Cores

v’ Allocate different core sets to simulation and bitmaps generation

v' A data queue is shared between simulation and bitmaps
generation

v Executed in parallel
* In-place bitvector compression
— Scan data by segments
— Merge segment into compressed bitvectors
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Time-Steps Selection
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Correlation Metrics

Earth Mover’s Distance:
— Indicate distance between two probability distributions over a region
— Cost of changing value distributions of data

Shannon’s Entropy:
— A metric to show the variablility of the dataset
— High entropy => more random distributed data

Mutual Information:
— A metric for computing the dependence between two variables
— Low M => two variables are relatively independent

Conditional Entropy:
— Self-contained information
— Information with respect to others
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* Divide T; and T; into bins
over value subsets

e Generate a CFP based
on value differences
between bins of T; and
T

 Accumulate results

EMD = > | CFP(j).

M;: 1-bits Count

Calculate Earth Mover’s Distance
Using Bitmaps
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Correlation Mining Using Bitmaps

« Correlation mining

— Automatically suggest data subsets with high correlations
— Correlation Analysis: keep submitting queries

— Traditional Method

v Exhaustive calculation over data subsets (spatial and value)
v'Huge time and memory cost

« Correlation mining using bitmap
— Mutual Information
v’ Calculated by probability distribution (value subsets)
— A top-down method for value subsets
v Multi-level bitmap indexing
v Go to low-level index only if high-level has high mutual info
— A bottom-up method for spatial subsets
v" Divide bitvectors (with high correlations) into basic strides
v Perform 1-bits count operation over strides
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Bitvectors of Variable A

Correlation Mining

Bitvectors of Variable B

Logic AND
g (1111011100...... 0001111000 OQO1100T100. .. ... 0001 100000 b{}
a1 [0000000010...... 0010000000 1100010000...... 0000011001 | b,
a2 0000000001...... 0000000001 0000100001....... 0000000000 | by
a; [0000100000..... 1100000110 0000000000....... 1100000110 | b;
Joint Bitvectors ﬂ Filtered Joint Bitvectors
agbg [0011001100...... 0001100000 | Minfo > 0.001 ayb, [0011001100 5001100000
apby [1100010000...... 0000011000 | Minfo > 0.001 Minfo > 0.01
agb, [0000000000__ 0000000000 | Minfo <0.001 | == | @ob1 1100010000 ... 0000011000
b+ [0000000000....... 0000000000 | Minf Minfo > 9T | woer-
doby | Mino =0.001 a;b; [0000000000 | ... 1100000110
a;b; [000000000-...... 1100000110 | Minfo > 0.001 Minfo> 201
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Experiment Results

. Goals:
— Efficiency and storage improvement using bitmaps
— Scalability in parallel in-situ environment
— Efficiency improvement for correlation mining
— Efficiency and accuracy comparison with sampling

Simulations: Heat3D, Lulesh
Datasets: Parallel Ocean Program

Environment:
— 32 Intel Xeon x5650 CPUs and 1TB memory
— MIC: 60 Intel Xeon Phi coprocessors and 8GB memory

— OSC Oakley Cluster: 32 nodes with 12 Intel Xeon x5650
CPUs and 48 GB memory -
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« Simulation: Heat3D; Processor: CPU

« Time steps: select 25 over 100 time steps
* 6.4 GB per time step (800*1000*1000)

« Metrics: Conditional Entropy

Efficiency Comparison for In-Situ
Analysis - CPU

Full Data (original):

Simulation: bad scalability
Time Step Selection: big

Data Writing: big and bad
scalability

Bitmaps:

Simulation: utilize extra
computing power for bitmaps
generation

Extra bitmaps generation time
but good scalability

Time Step Selection Using
Bitmaps: 1.38x to 1.5x

Bitmaps Writing: 6.78x
Overall: 0.79x to 2.38x

More number of cores, better
speedup we can achieve
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Efficiency Comparison for In-Situ
Analysis - MIC

« Simulation: Heat3D; Processor: MIC

« Time steps: select 25 over 100 time steps
1.6 GB per time step (200*1000*1000)

« Metrics: Conditional Entropy

MIC:

More cores
Lower bandwidth

Full Data (original):

Bitm

Huge data writing time
aps:
Good scalability of both

bitmaps generation and time
step selection using bitmaps

Much smaller data writing time
Overall: 0.81x to 3.28x
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Memory Cost (GB)
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Heat3D-6.4GB

Heat3D-1.6GB
Simulations

Lulesh-6.14GB

Lulesh-0.76GB

Simulation: Heat3D, Lulesh
Processor: CPU, MIC
Keep 10 time steps in memory
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Heat3D - No Indexing:

« 12 time steps (pre, temp, cur)
Heat3D - Bitmap Indexing:

« 2 time steps (pre, temp)

« 1 previous selected indices

« 10 current indices
Lulesh — No Indexing:

« 11 time steps (pre, cur)

* Huge extra memory for edges
Lulesh — Bitmap Indexing:

« 1time step (pre)

« 1 previous selected indices

« 10 current indices

* Huge extra memory for edges
2.0x to 3.59x smaller memory

Better as bigger data simulated

and more time steps to hQirs)
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Scalablility in Parallel Environment
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[ |Bitmaps - Remote
I Full Data - Remote

2Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

Number of Nodes

Select 25 time steps out of 100
TEMP Variable: 6.4 GB per time step

Number of nodes: 1 to 32
Number of cores: 8

Simulation: Heat3D
Full Data— Local:

Each node write its data
subblock into its own disk

Bitmaps— Local:

Each node writes its bitmaps
subblock into its own disk

Fast time step selection and
local writing

1.24x — 1.29x speedup

Full Data— Remote:

Different nodes send data
sub-blocks to a master node

Bitmaps — Remote:

Greatly alleviate data transfer
burden of master node

1.24x — 3.79x speedup cuumm
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Data Sizes

11.2 GB

Variables: TEMP, SALT

Data size per variable: 1.4 GB to 11.2 GB

Number of cores: 1

Simulation: POP
Full Data:

Big data loading cost

Exhaustive calculations over
data subsets

Each calculation is time
consuming

Bitmaps:

Smaller data loading

Multi-level bitmaps to improve
the mining process

Bitwise AND and 1-bits count
operations to improve the
calculation efficiency

3.81x — 4.92x speedup
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Heat3D ,100 time steps (6.4 GB), 32 cores
Bitmaps generation (binning, compression)
has more time cost then down-sampling

Sampling can effectively improve the time
step selection cost

Bitmaps generation can still achieve better
efficiency if the index size is smaller than
sample size
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Conditional Entropy Absolute Value Differences

Bitmaps: using the same binning scale,
does not have any information loss

Sampling: information loss is unavoidable
no matter what sample%

30% - 21.03% loss
15% - 37.56% loss
5% - 58.37% loss




Conclusion

» '‘Big Data’ issue brings challenges for scientific
data management

« Efficient in-situ bitmaps generation

« Efficient online data analysis (time step selection)
using only bitmaps

 Efficient offline data analysis (correlation mining)
using only bitmaps

« Compare In-situ data sampling with in-situ bitmaps
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