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Lightweight Threads

• Lightweight threads enable us to create 
a large number of threads 

- We can express logical concurrency as a thread 

- Runtime system performs dynamic load balancing 

- e.g. MassiveThreads, Qthreads, Nanos++
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long fib(long n) { 
if (n < 2) { 

return n; 
} else { 

thread_t t0 = thread_create(fib, n - 1); 
thread_t t1 = thread_create(fib, n - 2); 
long r0 = thread_join(t0); 
long r1 = thread_join(t1); 
return r0 + r1; 

}}
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Work Stealing

• A promising approach to dynamic load balancing 

- Each processor has a task queue 

- Idle processor steals tasks from another processor
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Inter-Node Work Stealing with 
Lightweight Threads
• Introducing inter-node work stealing to lightweight 

multithreading is challenging 

- It needs to migrate threads among nodes 

- An existing thread migration scheme (iso-address) 
is not scalable: 

‣ Each node requires O(P) virtual memory 
for thread stacks 

‣ Thread migration cannot utilize 
Remote Direct Memory Access (RDMA) features
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Important for scalability of work stealing 
 in large-scale distributed memory systems [Dinan,09]



Goal

• Lightweight multithread library supporting  
scalable inter-node work stealing 

- Solve scalability issues in existing thread migration 
scheme 
‣  Significantly reduce virtual memory usage 
‣  Enable RDMA-based thread migration
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Contributions

• Propose a new thread migration scheme, uni-address 

- requires only O(1) virtual memory per node  
for thread stacks 

• Implement a lightweight multithread library based on 
uni-address scheme 

- Scalable work stealing by RDMA features 

• Demonstrate its efficiency and scalability  
up to 4000 cores on Fujitsu FX10 system
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Related Work: 
Global Load Balancing Frameworks
• Classify them with implementation strategies 

- Bag-of-Tasks 

- Fork-join with tied tasks 

- Fork-join with untied tasks
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Related Work: 
Global Load Balancing Frameworks
• Bag-of-Tasks 

- Tasks cannot synchronize with other tasks 

- Task = a function pointer + arguments 

‣ Easy to implement task migration 

- cf. Scioto [Dinan08], X10-GLB [Zhang08]
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Related Work: 
Global Load Balancing Frameworks
• Fork-join with tied tasks 

- Support fork-join synchronization between tasks 

- Task = a function pointer + arguments 

‣ Easy to implement task migration 

- Tasks are tied: task already started cannot migrate 

‣ Low flexibility of task scheduling: 
e.g. lower load balancing efficiency 

- cf. Satin [Neuwpoort01], HotSLAW [Min11]
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Related Work: 
Global Load Balancing Frameworks
• Fork-join with untied tasks 

- Support fork-join synchronization and task migration 
at any program point 

- Compiler-based 

‣ cf. Distributed Cilk [Blumofe96], Tascell [Hiraishi09] 

- Library-based 

‣ Task = thread (which have a call stack) 

‣ Difficulty in migration of a call stack  
beyond node boundary 

‣ iso-address [Antoniu99] and our work solved it
10



Related Work: 
Global Load Balancing Frameworks
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Inter-task 
synchronization Untied tasks library/

compiler
Demonstrated 

Scalablity

Scioto [Dinan09] × × library 8192

X10-GLB [Zhang13] × × library 16384

Satin [Neuwpoort01] fork-join × compiler 256

HotSLAW [Min11] fork-join × library 256

Distributed Cilk 
[Blumofe96] fork-join ○ compiler 16

Tascell [Hiraishi09] fork-join ○ compiler 128

Proposed method fork-join ○ library 4096

The proposed method supports all of 
flexible task model, library-based implementation, and scalability



Thread Migration

• Move a thread among nodes 

- A thread contains a call stack 

- Stack transfer may invalidate intra-stack pointers
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×

We must maintain an invariant: 
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Iso-Address: 
Existing Thread Migration Scheme
• Put a stack on the same address around migration
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[Antoniu,99]

Thread 
stack
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virtual memory
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Thread 
stack

Stack transfer with 
the same virtual address

valid pointer

• Allocate an unique address for a call stack 
to ensure the address is not used in the receiving node 

- requires O(P) virtual memory per node



Scalability Issue 1

• A large amount of virtual memory 

- e.g.
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214+13+22  =  249  >  248

Stack size of a thread

Recursion depth of  
thread creation

Available cores

exceeds x86-64 virtual memory limit

≈  16KB  =  214

≈  8192  =  213

≈  4 million  =  222
(cf. Tianhe-2)

In total:

(cf. Unbalanced Tree Search)



Scalability Issue 2

• Unable to implement RDMA-based thread migration, 
important for scalable load balancing [Dinan,09] 

- Because: 
‣ RDMA-capable memory must be pinned down to 

physical memory 
‣ Virtual memory usage of iso-address is too 

large to fit into physical memory
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Basic Idea of Uni-Address Scheme

• Iso-address 

- A stack must be copied to the same virtual address 
in the receiving node upon migration 

- i.e. a stack ALWAYS occupies the same address 

• Uni-address 

- Key observation: it suffices to occupy the same 
address WHEN THE THREAD IS RUNNING 

- Reduce virtual memory usage by placing 
not-running threads into arbitrary addresses
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Basic Uni-Address Scheme
• Ensure that all threads shares the same address region, 

uni-address region 
- Place a running thread on the uni-address region 

- Not-running threads are evicted to RDMA-capable region

17

Uni-address region

Thread C 
(not-running)

RDMA region 
(arbitrary address)

Thread B 
(not-running)

0xXXXX0000

0xYYYY0000

Context switch in uni-address scheme

sp
Thread A 
(running)



Basic Uni-Address Scheme
• Ensure that all threads shares the same address region, 

uni-address region 
- Place a running thread on the uni-address region 

- Not-running threads are evicted to RDMA-capable region

17

Uni-address region

Thread C 
(not-running)

RDMA region 
(arbitrary address)

Thread B 
(not-running)

0xXXXX0000

0xYYYY0000

Context switch in uni-address scheme
1. Save execution context 

and evict stack contents to RDMA region

sp
Thread A 
(running)



Basic Uni-Address Scheme
• Ensure that all threads shares the same address region, 

uni-address region 
- Place a running thread on the uni-address region 

- Not-running threads are evicted to RDMA-capable region

17

Uni-address region

Thread C 
(not-running)

RDMA region 
(arbitrary address)

Thread B 
(not-running)

0xXXXX0000

0xYYYY0000

Context switch in uni-address scheme
1. Save execution context 

and evict stack contents to RDMA region

sp

Thread A 
(running)



Basic Uni-Address Scheme
• Ensure that all threads shares the same address region, 

uni-address region 
- Place a running thread on the uni-address region 

- Not-running threads are evicted to RDMA-capable region

17

Uni-address region

Thread C 
(not-running)

RDMA region 
(arbitrary address)

Thread B 
(not-running)

0xXXXX0000

0xYYYY0000

Context switch in uni-address scheme
1. Save execution context 

and evict stack contents to RDMA region

2. Load stack contents to uni-address region 
and resume execution context

sp

Thread A 
(running)



Basic Uni-Address Scheme
• Ensure that all threads shares the same address region, 

uni-address region 
- Place a running thread on the uni-address region 

- Not-running threads are evicted to RDMA-capable region

17

Uni-address region

Thread C 
(not-running)

RDMA region 
(arbitrary address)

Thread B 
(not-running)

0xXXXX0000

0xYYYY0000

Context switch in uni-address scheme
1. Save execution context 

and evict stack contents to RDMA region

2. Load stack contents to uni-address region 
and resume execution context

sp

Thread A 
(running)



Optimized Uni-Address Scheme

• Problem with basic uni-address scheme 

- Context switch incurs two stack copies: 
thread operations become heavyweight 

• How to reduce the stack copies? 

- Put two or more threads in uni-address region  
to reduce thread eviction 

- Focus on thread creation/exit operations  
because of
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(# of thread creation) >> (# of load balancing ops)



Thread Scheduling in Optimized Scheme

• Child-first work stealing scheduler 

- Execute a thread creation as if it is a function call 

- Can allocate child’s stack right above the parent stack
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Thread Scheduling in Optimized Scheme

• Child-first work stealing scheduler 

- Fork-join synchronization suspends a thread 
when the child thread is on another processor 

- A thread is evicted only when work stealing occurs
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Experimental Evaluation

• We implemented a lightweight multithread library 
based on uni-address scheme 

- Implemented inter-node work stealing with 
RDMA operations 

• Evaluate  

- Threading overhead 

- Work stealing time 

- Load balancing scalability with task-parallel 
benchmarks
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Experimental Setup

• Environments 

- Fujitsu FX10 system up to about 4000 cores 

‣ Simulate remote atomic operations with  
one assistant core per node 

- a Xeon E5-2660 2.2GHz server 

• Load balancing benchmarks: 

- Binary Task Creation 

- Unbalanced Tree Search 

- NQueens solver
22



Thread Creation Overhead

• Comparable to MassiveThreads, 
an existing lightweight multithread library 

- thanks to optimized uni-address scheme
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Fujitsu PRIMEHPC FX10 system
CPU SPARC64IXfx 1.848GHz, 16 cores
Memory 32GB/node
Interconnect Custom interconnect (Tofu)
OS XTCOS (GNU/Linux 2.6.25.8 based)
Compiler GCC 4.6.1 (option -O3)
MPI Fujitsu MPI Library 1.2.1
a single node x86-64 server
CPU Xeon E5-2660 2.2GHz * 2, total 16 cores
Memory 64GB/node
OS Debian 6.0.4 (GNU/Linux 2.6.32.5)
Compiler GCC 4.9.1 (option -O3)

Table 1: Experimental setup.

node Xeon server. Table 1 shows the hardware and software
configuration in our experiments. We used up to 256 nodes
for the experiments.
Although FX10 system provides RDMAREAD andWRITE

operations as Fujitsu RDMA interface, RDMA fetch-and-
add is not provided. Therefore, we implemented a software
implementation of remote fetch-and-add operation. To sim-
ulate hardware remote fetch-and-add operation, the fetch-
and-add implementation reserves a processing core within a
node in advance and use it as a communication server han-
dling fetch-and-add requests from other nodes. The fetch-
and-add requests are sent with “RDMA Write with remote
notice” operation, which is an RDMA WRITE operation
that notifies the target node of the completion of the op-
eration. Because there is a communication server within a
node, our experiments use only 15 cores within a node for
computation. Figure 9 shows the communication latencies
of RDMA READ/WRITE operations in FX10 system. The
latency of the software-based remote fetch-and-add opera-
tion is 9.8K cycles on average.
For comparison, we used two existing lightweight multi-

thread frameworks—MassiveThreads and MIT Cilk. Mas-
siveThreads is a lightweight multithread library written in
C, which can be extended to support inter-node load balanc-
ing with iso-address thread migration. Cilk is a lightweight
multithread framework implemented with source code pro-
cessing specialized for a fork-join model. These frameworks
support a child-first work stealing scheduler similar to uni-
address threads. In our experiments, we used MassiveThreads
0.95 and MIT Cilk 5.4.6.
Confidence intervals in the following figures are calculated

with 95% confidence level.

6.1 Benchmark Programs
To evaluate scalability of work stealing in our library,

we chose three benchmarks—Binary Task Creation (BTC)
benchmark, Unbalanced Tree Search (UTS) benchmark, and
NQueens solver:

BTC Binary Task Creation benchmark generates tasks re-
cursively. It has two parameters depth and iter. Depth
means the depth of a generated task tree, and each task
repeats, iter times, spawning two child tasks and wait-
ing for their completions. When iter ≥ 2, parallelism
rapidly grows and shrinks during execution; therefore,
it requires high load balancing performance.
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Figure 9: RDMA READ/WRITE latencies of FX10
system.

SPARC64IXfx Xeon E5-2660
Uni-address threads 413 cycles 100 cycles
MassiveThreads 658 cycles 110 cycles
Cilk 47 cycles 59 cycles

Table 2: Thread creation overhead.

UTS Unbalanced Tree Search benchmark [23] is a bench-
mark to evaluate performance of dynamic load balanc-
ing algorithms and implementations. UTS benchmark
traverses an unpredictable, tree-based state space gen-
erated by a probability distribution. The detailed de-
scription of parameters of UTS benchmark are in [23].
In our experiments, We chose a tree whose nodes have
0-4 child nodes based on a geometric distribution and
performed experiments with tree cutoff depth = 17
and 18. The command-line arguments is“-t 1 -r 0 -
b 4 -a 3 -d {17,18}”.

NQueens NQueens benchmark is a benchmark to calcu-
late the number of possible ways to place N queens
on a N × N chess board. The program used in our
experiments is based on the one in BOTS Benchmark
[10].

Because ordinary work stealing schedulers do not work
well with parallel loops that appear in UTS and NQueens,
we modified them to an efficient divide-and-conquer traver-
sal over loops in which each task generates zero or two sub-
tasks. Such an optimization is common in work stealing
schedulers; in fact, Intel Cilk Plus [15] performs such an
optimization for its cilk_for statement.

6.2 Task Creation Overhead
Wemeasured the overhead of a task creation in uni-address

threads on a SPARC64 IXfx processor and a Xeon E5-2660
processor. For comparison, we also measured the overhead
of task creation in MassiveThreads and MIT Cilk.

Table 2 shows the results. The task creation overhead
of uni-address threads is 413 cycles and 100 cycles on av-
erage on the SPARC64IXfx processor and the Xeon E5-
2660 processor, respectively. Here, we can see that uni-
address threads achieved a comparable performance to an
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Breakdown of Work Stealing Time

• 42K cycles in total 

• Overhead originating from uni-address scheme is 
3.5K cycles (7% of total work stealing time)
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Load Balancing Scalability (~3840 cores)
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Operation Description
empty check A operation to check whether a remote task queue is empty or not. It consists of an

RDMA READ operation.
lock A lock operation for a remote task queue. It consists of a remote fetch-and-add operation.
steal An operation to steal an entry from a remote task queue. It consists of two RDMA

READ and an RDMA WRITE operations.
suspend An operation to suspend a running thread.
stack transfer An operation to transfer stack frames. It consists of an RDMA READ operation.
unlock A unlock operation for a remote task queue. It consists of an RDMA WRITE operation.
resume An operation to resume a stolen thread.

Table 3: Operations consisting of work stealing.

Benchmark Parameters Total tasks or nodes Time Stack usage
Binary Task Creation (iter = 1) depth = 38 550 billion tasks 65.67 sec 43,568 bytes

depth = 39 1,099 billion tasks 33.37 sec 44,688 bytes
Binary Task Creation (iter = 2) depth = 19 367 billion tasks 32.96 sec 22,288 bytes

depth = 20 1,466 billion tasks 88.14 sec 23,408 bytes
Unbalanced Tree Search depth = 17 110 billion nodes 71.62 sec 139,536 bytes

depth = 18 439 billion nodes 282.2 sec 147,392 bytes
NQueens N = 17 8 billion nodes 47.60 sec 74,272 bytes

N = 18 59 billion nodes 317.8 sec 79,120 bytes

Table 4: The number of generated tasks or nodes in three benchmark. Time is average execution time on
3840 cores. Stack usage is maximum usage of the uni-address region.
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Figure 11: Parallel performance in three benchmarks.

Efficiency: 98% Efficiency: 84%

Efficiency: 99% Efficiency: 95%

All the benchmarks worked with 144KB uni-address region



Summary

• Uni-address: A scalable thread migration scheme 

- Requires only O(1) virtual memory per node 

- Enables RDMA-based work stealing 

• Demonstrated its performance with FX10 system 

- Comparable threading overhead to an existing library 

- Load balancing scalability up to 4000 cores
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