Uni-Address Threads:
Scalable Thread Management for
RDMA-based Work Stealing

Shigeki Akiyama, Kenjiro Taura
The University of Tokyo
June 17, 2015 HPDC’15

Lightweight Threads

 Lightweight threads enable us to create
a large number of threads

- We can express logical concurrency as a thread
- Runtime system performs dynamic load balancing

- e.g. MassiveThreads, Qthreads, Nanos++

long fib(long n) {
if (n<2){
return n;

} else {
thread_t t0 = thread_create(fib, n - 1);
thread_t t1 = thread_create(fib, n - 2);
long rO = thread_join(t0); g
long r1 = thread_join(t1);
return rO + r1;

1}

Work Stealing

* A promising approach to dynamic load balancing
- Each processor has a task queue

- lIdle processor steals tasks from another processor

- Worker 0 N - Worker 1 N
push/pop

(idle)

task “C|-L|eue Steal task c-|ueue
. y, . y,

running task

Inter-Node Work Stealing with
Lightweight Threads

* |Introducing inter-node work stealing to lightweight
multithreading is challenging

- It needs to migrate threads among nodes

- An existing thread migration scheme (iso-address)
IS not scalable:

» Each node requires O(P) virtual memory
for thread stacks

» Thread migration cannot utilize
Remote Direct Memory Access (RDMA) features

\
Important for scalability of work stealing
in large-scale distributed memory systems [Dinan,09]

.

Goal

e Lightweight multithread library supporting
scalable inter-node work stealing

- Solve scalability issues in existing thread migration
scheme

» Significantly reduce virtual memory usage
» Enable RDMA-based thread migration

Contributions

* Propose a new thread migration scheme, uni-address

- requires only O(1) virtual memory per node
for thread stacks

* Implement a lightweight multithread library based on
uni-address scheme

- Scalable work stealing by RDMA features

« Demonstrate its efficiency and scalability
up to 4000 cores on Fujitsu FX10 system

Related Work:
Global Load Balancing Frameworks

« Classify them with implementation strategies
- Bag-of-Tasks
- Fork-join with tied tasks

- Fork-join with untied tasks

Related Work:
Global Load Balancing Frameworks

« Bag-of-Tasks

- Tasks cannot synchronize with other tasks

- Task = a function pointer + arguments
» Easy to implement task migration

- cf. Scioto [Dinan0s], X10-GLB [zhangos]

Related Work:
Global Load Balancing Frameworks

* Fork-join with tied tasks

- Support fork-join synchronization between tasks

- Task = a function pointer + arguments
» Easy to implement task migration
- Tasks are tied: task already started cannot migrate

» Low flexibility of task scheduling:
e.g. lower load balancing efficiency

cf. Satin [Neuwpoorto1], HOtSLAW [Min11]

Related Work:
Global Load Balancing Frameworks

* Fork-join with untied tasks

- Support fork-join synchronization and task migration
at any program point

- Compiler-based

» cf. Distributed Cilk [Blumofe9s], Tascell [Hiraishiog]

- Library-based

» Task = thread (which have a call stack)

» Difficulty in migration of a call stack
beyond node boundary

» ISO-address [Antoniug9] and our work solved it

Related Work:
Global Load Balancing Frameworks

, Inter-task : library/ Demonstrated
synchronization Untied tasks compiler Scalablity
Scioto [Dinan09] X X library 8192
X10-GLB zhangts] | < < ibrary 16384
Satin Newwpoortot] | forkjoin < compiler | 256
""" HOtSLAW mintt] | forkjon | x | lbray | 256
Dis[t;,if,:,‘:fegs?"k fork-join o compiler 16
Tascell piraishios] | forkjoin o . compller | 128
Proposed method fork-join

The proposed method supports all of
flexible task model, library-based implementation, and scalability

Thread Migration

 Move a thread among nodes
- A thread contains a call stack

- Stack transfer may invalidate intra-stack pointers

Node 0’s Node 1's
virtual memory virtual memory
OXXXXXOOOO
Thread j x(_
stack @
"""""""""""""""""""" Thread
| stack €T
Naive stack transfer
OXYYYY0000 e —— J invalid pointer)

We must maintain an invariant:
the address of a call stack is the same around thread migration

Iso-Address:
Existing Thread Migration Scheme (antoniu,9]

* Put a stack on the same address around migration

virtual memory

OxXXXX0000

OxYYYY0000

Node O’s

Node 1’s
virtual memory

Thread
stack @

]

Stack transfer with

the same virtual address

E valid pointer

 Allocate an unigue address for a call stack

to ensure the address is not used in the receiving node

- requires O(P) virtual memory per node

Scalability Issue 1

* Alarge amount of virtual memory

- e.qg.
Stack size of a thread

R

16KB = 214

Recursion depth of
thread creation

Q

8192 = 213

(cf. Unbalanced Tree Search)

4 million = 222
(cf. Tianhe-2)

Q

Available cores

In total: 214+13+22 = 249 5 948

exceeds x86-64 virtual memory limit

Scalability Issue 2

« Unable to implement RDMA-based thread migration,

important for scalable load balancing [Dinan,09]

- Because:

» RDMA-capable memory must be pinned down to

physical memory

» Virtual memory usage of iso-address is too

large to fit into physical memory

r

Mem

1

CPU

NIC

f

Memory

NIC

CPU

\

\(Stack memory region cannot be pinned down)/

Basic Idea of Uni-Address Scheme

* |so-address

- A stack must be copied to the same virtual address
in the receiving node upon migration

- l.e. a stack ALWAYS occupies the same address

e Uni-address

- Key observation: it suffices to occupy the same
address WHEN THE THREAD IS RUNNING

- Reduce virtual memory usage by placing
not-running threads into arbitrary addresses

Basic Uni-Address Scheme

* Ensure that all threads shares the same address region,
uni-address region

- Place a running thread on the uni-address region

- Not-running threads are evicted to RDMA-capable region

Context switch in uni-address scheme
RDMA reqgion

(arbitrary address)

Uni-address region
OxXXXXX0000
-------------------------------- <« SD
Thread C Thread A
(not-running) (running)
--------------------------------- OxYYYYO0000
Thread B
(not-running)

Basic Uni-Address Scheme

* Ensure that all threads shares the same address region,
uni-address region

- Place a running thread on the uni-address region

- Not-running threads are evicted to RDMA-capable region

Context switch in uni-address scheme

RDMA region 1. Save execution context
(arbitrary address) and evict stack contents to RDMA region
V Uni-address region
OxXXXX0000
-------------------------------- — Sp
Thread C Thre'“‘_d A
(notmumnning))] oxYYYY0000
Thread B
(not-running)

Basic Uni-Address Scheme

* Ensure that all threads shares the same address region,
uni-address region

- Place a running thread on the uni-address region

- Not-running threads are evicted to RDMA-capable region

Context switch in uni-address scheme

RDMA region 1. Save execution context
(arbitrary address) and evict stack contents to RDMA region
Thread A V Uni-address region
(running) OxXXXX0000
""""""""""""""""""" <« Sp
Thread C
(not-running)
OxYYYYO0000

Thread B

(not-running)

Basic Uni-Address Scheme

* Ensure that all threads shares the same address region,
uni-address region

- Place a running thread on the uni-address region

- Not-running threads are evicted to RDMA-capable region

Context switch in uni-address scheme

RDMA region 1. Save execution context
(arbitrary address) and evict stack contents to RDMA region
Thread A V Uni-address region
(running) OxXXXX0000
""""""""""""""""""" <« Sp
Thread C
(not-running)
OxYYYYO0000

X

2. Load stack contents to uni-address region
and resume execution context

Thread B

(not-running)

Basic Uni-Address Scheme

* Ensure that all threads shares the same address region,
uni-address region

- Place a running thread on the uni-address region

- Not-running threads are evicted to RDMA-capable region

Context switch in uni-address scheme

RDMA region 1. Save execution context
(arbitrary address) and evict stack contents to RDMA region
Thread A V Uni-address region
(running) OxXXXX0000
""""""""""""""""""" <« Sp
Thread C Thread B
t-runni t-runni
(notmumnning) (OIS | Y YYY0000
A
2. Load stack contents to uni-address region
and resume execution context

Optimized Uni-Address Scheme

 Problem with basic uni-address scheme

- Context switch incurs two stack copies:
thread operations become heavyweight

* How to reduce the stack copies?

- Put two or more threads in uni-address region
to reduce thread eviction

- Focus on thread creation/exit operations
because of

(# of thread creation) >> (# of load balancing ops)

Thread Scheduling in Optimized Scheme

 Child-first work stealing scheduler (cf. [Mohr,91], [Frigo,98])

Execute a thread creation as if it is a function call

- Can allocate child’s stack right above the parent stack

Uni-address region

>

Stack grows

free

create a thread

Thread B
(running)

Thread A

(not-running)

<« Sp

N

free

<« Sp
Thread C _
(running) | thread exit
Thread B —>

(not-running)

Thread A

(not-running)

free

Thread B
(running)

Thread A

(not-running)

<« Sp

Optimized scheme can create threads without stack copy

Thread Scheduling in Optimized Scheme

 Child-first work stealing scheduler (cf. [Mohr,91], [Frigo,98])

- Fork-join synchronization suspends a thread
when the child thread is on another processor

- A thread is evicted only when work stealing occurs

Node 1’s
uni-address reqion

«— Sp

(W\ait

free

Thread eviction
when join operation

RDMA reqgion

Node O’s
uni-address reqgion
A free
(]
=
O
(o))
5 Thread B
® i
5 (running)
Thread A
(not-running)

Thread A

(running)

Sp

ﬂ Thread B
(not-running)

20

Experimental Evaluation

* We implemented a lightweight multithread library
based on uni-address scheme

- Implemented inter-node work stealing with
RDMA operations

« Evaluate
- Threading overhead
- Work stealing time

- Load balancing scalability with task-parallel
benchmarks

21

Experimental Setup

 Environments
- Fujitsu FX10 system up to about 4000 cores

» Simulate remote atomic operations with
one assistant core per node

- a Xeon E5-2660 2.2GHz server

* Load balancing benchmarks:
- Binary Task Creation
- Unbalanced Tree Search

- NQueens solver

22

Thread Creation Overhead

SPARC64IXfx | Xeon E5-2660
| Uni-address threads 413 cycles 100 cycles
MassiveThreads 658 cycles 110 cycles

« Comparable to MassiveThreads,
an existing lightweight multithread library

- thanks to optimized uni-address scheme

23

Breakdown of Work Stealing Time

16000
14000 r
12000 r
10000 r
8000
6000 r
4000 |
2000 r

0

Time (cycles)

Q

"%,
C
oy,

« 42K cycles In total

« Overhead originating from uni-address scheme is
3.5K cycles (7% of total work stealing time)

24

Load Balancing Scalability (~3840 cores)

o
[}
S 18000
;)i 16000
§ 14000
£ 12000
§ 10000
S 8000
€ 6000
S 4000
g
S 2000
3 0
ey
|_

Binary Task Creation (iter=1)

_"}
.
pd
B
~"Efficiency: 98%

500 1000 1500 2000 2500 3000 3500 4000

depth = 38

of cores

depth = 39 =

(a) Binary Task Creation (iter=1)

(c) Unbalanced Tree Search

'g Unbalanced Tree Search
2 1600
g8
o 1400
3
S 1200
C
% 1000
& 800
o
= 600
€
?5’ 400

Effirg = QQO/.
£ 200 Efficiency: 99%
> 0 I 1
E 0 500 1000 1500 2000 2500 3000 3500 4000

of cores
depth =17 depth =18 =---x-eee

Throughput (millions of tasks per sec)

Throughput (millions of nodes per sec)

18000
16000
14000
12000
10000
8000
6000
4000
2000
0

Binary Task Creation (iter=2)

o
,""’/‘)‘("
g
<~ Efficiency: 84%

500 1000 1500 2000 2500 3000 3500 4000

of cores

depth=19

depth=20Q -

(b) Binary Task Creation (iter=2)

NQueens
200
180
160
140 B
120 e
100 T
80
60
40 ‘/” Effic . OEO/]
20 LA~ ency. W IG
0
0 500 1000 1500 2000 2500 3000 3500 4000
of cores
N=17 N=18 cxmws

(d) NQueens

All the benchmarks worked with 144KB uni-address region

25

Summary

* Uni-address: A scalable thread migration scheme

- Requires only O(1) virtual memory per node

- Enables RDMA-based work stealing

« Demonstrated its performance with FX10 system
- Comparable threading overhead to an existing library

- Load balancing scalability up to 4000 cores

26

