Bidding for Highly Available
Services with Low Price in Spot
Instance Market

Weichao Guo, Kang Chen, Yongwei Wu,
and Weimin Zheng

Tsinghua University

On-Demand Instance vs. Spot Instance

 Price Model

— On-Demand: pre-define
— Spot: fluctuate based on supply & demand

* Failure Model
— On-Demand: SLAs
— Spot: terminated when spot price exceeds bid

Cost-Efficient Computing with Spot
Instances

* Optional accelerators for MapReduce jobs
[HotCloud "10]

Fixed Bidding Time Flexible

Cost-Efficient Computing with Spot
Instances

Fixed Bidding Time Flexible

Cost-Efficient Computing with Spot
Instances

* Profit aware dynamic bidding from a cloud
service broker’s perspective [INFOCOM “12]

Fixed Bidding Time Flexible

Cost-Efficient Computing with Spot
Instances

Fixed Bidding Time Flexible

High available services with low prices?

Distributed Service Basics

e State Machine Replication

RSM

P
(&

|
J

\/ Quorum-based

: Protocols
\@

Distributed Service Basics

* Acceptance Set A

—Intersection VS T € A, SNT # ()
— Monotonicity VI' D S, 5e¢ A —T c A

* Availability

Aqa= > (11 @ =p) 1] prj)

SeA €S jeS

Distributed Service with Spot Instances

@ ~25.55s >1500 s

Distributed Service with Spot Instances

>1500 s
~ To Improve Availability: « Higher Bids

e More nodes

Contributions

e Spot Instance Failure Model
— Availability analysis
— Failure probability estimation
* Bidding Framework

— Cost minimization problem
— Online bidding strategy

Outline

'[Problem Formalization]
— Spot Instance Failure Model

— Cost Minimization Problem

* Bidding Framework

— Failure Probability Estimation
— Online Bidding

* Experiment

Spot Instance Failure Model

lolololOllllq,-,.

01 Olllll.j(_in:
1} | IOOOlOOIC
!;':ll %IOI 01001010 01

On-Demand Instance Out-of-bid Failure
Failures

Spot Instance Failure Model

) |

Pr(p(t)>b)

0.012

o
o
—
|

o
o
S
o

o
o
o
o)

Spot Price (USD)

o
o
S
D

0.002

8:38 9:07 9:36 10:04 10:33 11:02
Time (9:00 AM - 11:00 AM in June 24th, 2014)

Spot Instance Failure Model

S >2
o s {Si,l=1,2,...,n)
~ S
S e
W | |
T, i :
T S T (T,i=12,...,n)

Time

Spot Instance Failure Model

e Semi-Markovian Chain’s Stochastic Kernel

Q(iajv k) — (QZ,j,kr S7y 97 €S,k € T)

where

i3,k — P"“(Sn+1 = Sj,On = S, Tn = k)

Spot Instance Failure Model

* Failure probability at time t
FP(t)=1—-(1—-FP") (1 - Pr(p(t) >b))

* Failure probability in time duration d

/ *FP()di
0

Cost Minimization Problem

Availability Zones & i.i.d.

Cost Minimization Problem

* Bidding Interval & Objective

<
>

Spot Price

1 : 2 Hour(s
Time (s)

Cost Minimization Problem

n
min » b,
i=1

S.t.
n

> e(b;—p;) >m
1=1
and

A Ao(So,FP) — AU, (S5, FP(b)) < €

Outline

* Problem Formalization
— Spot Instance Failure Model
— Cost Minimization Problem

'[Bidding Framework]

— Failure Probability Estimation
— Online Bidding

* Experiment

Distributed
System

Bidding Framework

Constraints

A 4

{

Spot Instance
Failure Model

}_

Online
Bidding

\

Bids

/

Cloud
Provider

Bidding Framework

* Keeping Safety at Reconfiguration

Interval A

<€

— 0000 00
<€

— ¢ ® 00
<€

Interval B

Failure Probability Estimation

 Maximum Likelihood Estimator (MLE)
G ik = N’j if N; & 0, otherwise q;_; =

[

* Failure Probability (in a time unit)(FP)

b
1-(1—-FP)) aqmp<b<o
J=Dp

Online Bidding

* Constraint Without Analytic Expression

@
4,2 @

-

e Exhaustive search ?
— Traverse space mn

* Keeping FPs same & bidding greedily

Online Bidding

- S (
—»&—» A: $88555S

B: S$5555

B

SSSS $$$ SSSS

mwwm

For each possible n, get FP with given Availability
For each AZ, get min bid with given FP
Select bids of AZs in a greedy way

Choose the lowest bidding CONFIG

Outline

* Problem Formalization
— Spot Instance Failure Model
— Cost Minimization Problem

* Bidding Framework

— Failure Probability Estimation
— Online Bidding

'[Experiment

Experiment

e Whether cost has been reduced?

* What about the availability achieved?

Experiment Setup

Experimental Systems
— Distributed Lock Service (‘linux.m1.small’)

— Erasure Code Based Distributed Storage Service
(linux.m3.large)

Estimator Training
— ~ 3 months spot price data

Baseline
— 5 On-Demand Instances

Straw-man Scheme

— Extra(m, p): Adding m extra nodes & setting bids as
spot price + extra portion p

Experiment Setup

e Test Cases

Micro-Benchmark .

1-month-long test 'ES B2

-week-long running on EC2

)
x| = Out-of-bid Failure Only

\

nnnnn

11-week-long spot prices replay

Experiment Results

* Feasibility

COST AVAILABILITY

Jupiter

©
. ©

e Micro-Benchmark

0.01
0.008

©
®

o
O 0.006
]
S 0.004
>
0.002
(]
o0 0 —
X]
‘G -0.002

mocmiamall inuxmal
B oo Ilnux.mllall linux.m3. E

Experiment Results

* Cost under different bidding intervals

0.35 Wl Jupiter
0.3 - Extra(0, 0.2)
= 0.25 - —Extra(2, 02)

o
N

v
= 8 N B _
1 3 6 9 12 1 3 6 9 12

Lock Service Storage Service

Normalized Cost
(Baseline
o
[
ol

o ¢
o ©
Ul -

|

o
|

Jupiter costs only ~ 1/5 and ~1/6 of the baseline

Experiment Results

* Availability under different bidding intervals

- 1 | et

1 A&
0.993 0.995

g% I 0.99
= 0.997 Jupiter
0 0.985
g 0.996 <E=Extra(0, 0.2) 0.98

0.995 :

0.994 Extra(2, 0.2) 0.975

0.993 0.97

1 3 6 9 12 1 3 6 9 12
Storage Service

Lock Service

Jupiter kept the service availability level close to the baseline

Summary

Market pricing has bring a new vision of Cloud
Computing

Spot instance failure model challenges the
reliability of quorum-based system

The problem is formalized by Spot Instance
Failure Model and Non-linear Programming

Our bidding framework can obtain cost
efficiency while still keeping high availability

THANKS FOR YOUR ATTENTION!

~

=
¥ |

Questions ?

