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On-Demand Instance vs. Spot Instance

 Price Model

— On-Demand: pre-define
— Spot: fluctuate based on supply & demand

* Failure Model
— On-Demand: SLAs
— Spot: terminated when spot price exceeds bid



Cost-Efficient Computing with Spot
Instances

* Optional accelerators for MapReduce jobs
[HotCloud "10]

Fixed Bidding Time Flexible




Cost-Efficient Computing with Spot
Instances

Fixed Bidding Time Flexible




Cost-Efficient Computing with Spot
Instances

* Profit aware dynamic bidding from a cloud
service broker’s perspective [INFOCOM “12]

Fixed Bidding Time Flexible




Cost-Efficient Computing with Spot
Instances

Fixed Bidding Time Flexible

High available services with low prices?



Distributed Service Basics
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Distributed Service Basics

* Acceptance Set A

—Intersection VS T € A, SNT # ()
— Monotonicity VI' D S, 5e¢ A —T c A

* Availability

Aqa= > (11 @ =p) 1] prj)

SeA €S jeS



Distributed Service with Spot Instances

@ ~25.55s >1500 s



Distributed Service with Spot Instances

>1500 s
~ To Improve Availability:  « Higher Bids

e More nodes



Contributions

e Spot Instance Failure Model
— Availability analysis
— Failure probability estimation
* Bidding Framework

— Cost minimization problem
— Online bidding strategy



Outline

'[Problem Formalization]
— Spot Instance Failure Model

— Cost Minimization Problem

* Bidding Framework

— Failure Probability Estimation
— Online Bidding

* Experiment



Spot Instance Failure Model
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On-Demand Instance Out-of-bid Failure
Failures



Spot Instance Failure Model
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Spot Instance Failure Model
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Spot Instance Failure Model

e Semi-Markovian Chain’s Stochastic Kernel

Q(iajv k) — (QZ,j,kr S7y 97 €S,k € T)

where

i3,k — P"“(Sn+1 = Sj,On = S, Tn = k)



Spot Instance Failure Model

* Failure probability at time t
FP(t)=1—-(1—-FP") (1 - Pr(p(t) >b))

* Failure probability in time duration d
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Cost Minimization Problem

Availability Zones & i.i.d.



Cost Minimization Problem

* Bidding Interval & Objective
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Cost Minimization Problem
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Outline

* Problem Formalization
— Spot Instance Failure Model
— Cost Minimization Problem

'[ Bidding Framework]

— Failure Probability Estimation
— Online Bidding

* Experiment
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Bidding Framework

* Keeping Safety at Reconfiguration
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Failure Probability Estimation

 Maximum Likelihood Estimator (MLE)
G ik = N’j if N; & 0, otherwise q;_; =
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* Failure Probability (in a time unit)(FP)

b
1-(1—-FP) ) aqmp<b<o
J=Dp



Online Bidding

* Constraint Without Analytic Expression
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e Exhaustive search ?
— Traverse space mn

* Keeping FPs same & bidding greedily




Online Bidding
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For each possible n, get FP with given Availability
For each AZ, get min bid with given FP
Select bids of AZs in a greedy way

Choose the lowest bidding CONFIG




Outline

* Problem Formalization
— Spot Instance Failure Model
— Cost Minimization Problem

* Bidding Framework

— Failure Probability Estimation
— Online Bidding

'[ Experiment




Experiment

e Whether cost has been reduced?

* What about the availability achieved?



Experiment Setup

Experimental Systems
— Distributed Lock Service (‘linux.m1.small’)

— Erasure Code Based Distributed Storage Service
(linux.m3.large)

Estimator Training
— ~ 3 months spot price data

Baseline
— 5 On-Demand Instances

Straw-man Scheme

— Extra(m, p): Adding m extra nodes & setting bids as
spot price + extra portion p



Experiment Setup

e Test Cases

Micro-Benchmark .

1-month-long test 'ES B2

-week-long running on EC2
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11-week-long spot prices replay



Experiment Results

* Feasibility

COST AVAILABILITY
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Experiment Results

* Cost under different bidding intervals
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Jupiter costs only ~ 1/5 and ~1/6 of the baseline



Experiment Results

* Availability under different bidding intervals
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Summary

Market pricing has bring a new vision of Cloud
Computing

Spot instance failure model challenges the
reliability of quorum-based system

The problem is formalized by Spot Instance
Failure Model and Non-linear Programming

Our bidding framework can obtain cost
efficiency while still keeping high availability
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