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THE HYBRID RUNTIME (HRT)


HRT 

MORE POWER! 
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We built a kernel framework
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Legion  Processor Count (Cores) 

11% average speedup
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MINIMAL LIGHTWEIGHT PRIMITIVES


FULL HARDWARE ACCESS


VERY FAST BOOT TIMES




LIGHTWEIGHT PRIMITIVES"
 EXAMPLE: THREADS
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x86_64 Opteron: 64 cores, 4 sockets, 8 numa zones, 128GB RAM




FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"




44 



FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"




45 

very simple modification:
give runtime control
over interrupts in its
task scheduler



FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"




46 

very simple modification:


à modest speedups


give runtime control
over interrupts in its
task scheduler



FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"




47 

very simple modification:


MUCH more to come here


à modest speedups


give runtime control
over interrupts in its
task scheduler
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in addition to Legion, 

we have 2 other high-level, parallel runtimes


running as HRTs


NESL: VCODE interpreter running as HRT

NDPC: home-grown, co-designed HRT
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INTEGRATING THE HRT WITH A LEGACY OS
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HVM
THE HYBRID VIRTUAL MACHINE
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parallel runtime
user mode 

kernel mode parallel runtime


general OS


node hardware


Hybrid Virtual Machine (HVM)!

general virtualization 

model


specialized virtualization 
model


Legacy functionality from the 
Regular OS via the HVM!

Regular OS (ROS) 
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LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs  
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LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs  

HRT boot is CHEAP!



NAUTILUS + XEON PHI
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XEON PHI + NAUTILUS + LEGION + HPCG



my website
halek.co




our development blog 

haltloop.com




our lab
presciencelab.org




the Hobbes project

xstack.sandia.gov/hobbes


Kyle Hale                 Peter Dinda


A CASE FOR TRANSFORMING !
PARALLEL RUNTIMES  
INTO OS KERNELS


follow us here for:



-  experience report on 

building OS for Phi



-   philix release (soon)
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This is the performance path, 
through the HRT!
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parallel runtime
user mode 

kernel mode parallel runtime


general OS


node hardware


Hybrid Virtual Machine (HVM)!

general virtualization 

model


specialized virtualization 
model


We can boot these things very 
quickly!!
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parallel app


hybrid runtime!

several auxiliary HRTs spawned in!
less than a millisecond  !
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port of NESL 


-  nested data parallel language 
    aimed at vector machines

 
-  we can run unmodified NESL programs
     in our kernel-mode VCODE interpreter
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the first co-designed HRT: NDPC

-  Nested Data Parallelism in C/C++
-  subset of NESL
-  fork/join parallelism over 
    flattened vector processing
-  allows us to explore runtime/kernel
     co-design
-   e.g. smart kernel-mode thread fork 
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find out more @ haltloop.com
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