
A CASE FOR TRANSFORMING !
PARALLEL RUNTIMES  
INTO OS KERNELS

Kyle Hale Peter Dinda

halek.co

v3vee.org

presciencelab.org

xstack.sandia.gov/hobbes

2

HOBBES

xstack.sandia.gov/hobbes

v3vee.org

v3vee.org/palacios

3

parallel app

parallel runtime

general-purpose kernel

node HW

user mode

kernel mode

THE CURRENT OS/RUNTIME MODEL

4

THIS MODEL HAS SOME ISSUES

5

user mode

kernel mode

ARE PROVIDED KERNEL

ABSTRACTIONS THE RIGHT ONES?

NOT ALWAYS

I’d like to pin
memory to a
specific PFN

range please

NO!

runtime

general OS

6

user mode

kernel mode

NOT ALWAYS

I’d like to never
be interrupted

please

NOPE

runtime

general OS

ARE PROVIDED KERNEL

ABSTRACTIONS THE RIGHT ONES?

7

user mode

kernel mode

RESTRICTED ACCESS TO HARDWARE

I’d like to set up
some custom

page mappings
please

Uh no

runtime

general OS

8

user mode

kernel mode

I’d like to interrupt
another

processor please

HA!

runtime

general OS

RESTRICTED ACCESS TO HARDWARE

9

What are the consequences?

10

What are the consequences?

WORKAROUNDS &

COMPROMISES

11

What are the consequences?

WORKAROUNDS &

COMPROMISES

DUPLICATED FUNCTIONALITY

12

If runtime had

we could mitigate these issues

13 we could mitigate these issues

FULL HARDWARE ACCESS

If runtime had

14 we could mitigate these issues

FULL HARDWARE ACCESS

CONTROL OVER

KERNEL ABSTRACTIONS

If runtime had

15

parallel app

parallel runtime

general-purpose kernel

node HW

user mode

kernel mode

THE CURRENT OS/RUNTIME MODEL

16

parallel app

hybrid runtime!

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

17

parallel app

hybrid runtime!

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

Mashup of
OS and
runtime

18

parallel app

hybrid runtime!

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

The runtime IS the kernel, built within a kernel framework

19

parallel app

hybrid runtime!

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

The runtime IS the kernel, built within a kernel framework

Everything is in kernel space

20

parallel app

hybrid runtime!

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

The runtime IS the kernel, built within a kernel framework

Everything is in kernel space

HRT has full access to the hardware

21

parallel app

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

HRT

HRT can control HW access

HRT can pick its own abstractions

22

parallel app

node HW

user mode

kernel mode

OUR PROPOSED MODEL:

THE HYBRID RUNTIME (HRT)

HRT

MORE POWER!

23

We built a kernel framework

to support HRTs

24

We built a kernel framework

to support HRTs
 NAUTILUS

25

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

NAUTILUS

26

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

NAUTILUS

LEGION
legion.stanford.edu!

27

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

We ported our framework to

cutting-edge many-core hardware

NAUTILUS

LEGION
legion.stanford.edu!

28

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

We ported our framework to

cutting-edge many-core hardware

NAUTILUS

LEGION

XEON PHI

legion.stanford.edu!

29

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

We ported our framework to

cutting-edge many-core hardware

We evaluated our port on

a standard HPC benchmark

NAUTILUS

LEGION

XEON PHI

legion.stanford.edu!

30

We built a kernel framework

to support HRTs

We ported an existing,

complex parallel runtime

We ported our framework to

cutting-edge many-core hardware

We evaluated our port on

a standard HPC benchmark

NAUTILUS

LEGION

XEON PHI

HPCG

legion.stanford.edu!

31

0%

5%

10%

15%

20%

25%

1 2 4 8 16 32 64 128 200 220

Sp
e

e
d

up
 o

ve
r L

in
ux

Legion Processor Count (Cores)

XEON PHI + NAUTILUS + LEGION + HPCG

32

0%

5%

10%

15%

20%

25%

1 2 4 8 16 32 64 128 200 220

Sp
e

e
d

up
 o

ve
r L

in
ux

Legion Processor Count (Cores)

XEON PHI + NAUTILUS + LEGION + HPCG

33

0%

5%

10%

15%

20%

25%

1 2 4 8 16 32 64 128 200 220

Sp
e

e
d

up
 o

ve
r L

in
ux

Legion Processor Count (Cores)

11% average speedup

XEON PHI + NAUTILUS + LEGION + HPCG

NAUTILUS

34

runtime

parallel app

threads sync. events
HW
info bootstrap paging timers IRQs console

Hardware

user mode

kernel mode

NAUTILUS

35

runtime

parallel app

threads sync. events
HW
info bootstrap paging timers IRQs console

Hardware

user mode

kernel mode

Nautilus primitives & utilities (HRT can use or not use any of them)

NAUTILUS

36

runtime

parallel app

threads sync. events
HW
info bootstrap paging timers IRQs console

Hardware

user mode

kernel mode

Nautilus primitives & utilities (HRT can use or not use any of them)

aerokernel

NAUTILUS

37

runtime

parallel app

threads sync. events
HW
info bootstrap paging timers IRQs console

Hardware

user mode

kernel mode

HRT

NAUTILUS

38

runtime

parallel app

threads sync. events
HW
info bootstrap paging timers IRQs console

Hardware

user mode

kernel mode

Kernel

39

MINIMAL LIGHTWEIGHT PRIMITIVES

FULL HARDWARE ACCESS

VERY FAST BOOT TIMES

LIGHTWEIGHT PRIMITIVES"
 EXAMPLE: THREADS

40

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2 4 8 16 32 64

C
yc

le
s

Nautilus

Linux (pthreads)

x86_64 Opteron: 64 cores, 4 sockets, 8 numa zones, 128GB RAM

41

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2 4 8 16 32 64

C
yc

le
s

Linux (pthreads)

LIGHTWEIGHT PRIMITIVES"
 EXAMPLE: THREADS

x86_64 Opteron: 64 cores, 4 sockets, 8 numa zones, 128GB RAM

42

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2 4 8 16 32 64

C
yc

le
s

Nautilus

Linux (pthreads)

LIGHTWEIGHT PRIMITIVES"
 EXAMPLE: THREADS

x86_64 Opteron: 64 cores, 4 sockets, 8 numa zones, 128GB RAM

43

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2 4 8 16 32 64

C
yc

le
s

Nautilus

Linux (pthreads)

LIGHTWEIGHT PRIMITIVES"
 EXAMPLE: THREADS

~3ms

~90µs

x86_64 Opteron: 64 cores, 4 sockets, 8 numa zones, 128GB RAM

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

44

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

45

very simple modification:
give runtime control
over interrupts in its
task scheduler

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

46

very simple modification:

à modest speedups

give runtime control
over interrupts in its
task scheduler

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

47

very simple modification:

MUCH more to come here

à modest speedups

give runtime control
over interrupts in its
task scheduler

48

in addition to Legion,

we have 2 other high-level, parallel runtimes

running as HRTs

NESL: VCODE interpreter running as HRT

NDPC: home-grown, co-designed HRT

49

INTEGRATING THE HRT WITH A LEGACY OS

50

HVM
THE HYBRID VIRTUAL MACHINE

51

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

Legacy functionality from the
Regular OS via the HVM!

Regular OS (ROS)

52

LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs

53

LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs

HRT boot is CHEAP!

NAUTILUS + XEON PHI

54

55

56

0%

5%

10%

15%

20%

25%

1 2 4 8 16 32 64 128 200 220

Sp
e

e
d

up
 o

ve
r L

in
ux

Legion Processor Count (Cores)

11% average speedup

XEON PHI + NAUTILUS + LEGION + HPCG

my website
halek.co

our development blog

haltloop.com

our lab
presciencelab.org

the Hobbes project

xstack.sandia.gov/hobbes

Kyle Hale Peter Dinda

A CASE FOR TRANSFORMING !
PARALLEL RUNTIMES  
INTO OS KERNELS

follow us here for:

-  experience report on

building OS for Phi

- philix release (soon)

58

BACKUPS

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

59

0%

1%

2%

3%

4%

5%

6%

2 4 8 16 32 62

Sp
e

e
d

up

Legion Processors (threads)

FULL HARDWARE CONTROL"
EXAMPLE: INTERRUPT CONTROL"

60

0%

1%

2%

3%

4%

5%

6%

2 4 8 16 32 62

Sp
e

e
d

up

Legion Processors (threads)

61

parallel app

hybrid runtime!

node HW

user mode

kernel mode

62

parallel app

hybrid runtime!

node HW

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

63

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

64

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

This is the performance path,
through the HRT!

65

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

Legacy functionality from the
Regular OS via the HVM!

Regular OS (ROS)

66

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

We can boot these things very
quickly!!

67

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

parallel app

hybrid runtime!

parallel app

hybrid runtime!

parallel app

hybrid runtime!

several auxiliary HRTs spawned in!
less than a millisecond !

68

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 200 220

Ex
e

c
ut

io
n

Ti
m

e
 (

s)

Legion Processor Count (Cores)

Natuilus

Linux

HPCG IN LEGION ON XEON PHI

HPCG IN LEGION ON XEON PHI

69

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 200 220

Ex
e

c
ut

io
n

Ti
m

e
 (

s)

Legion Processor Count (Cores)

Natuilus

Linux

70

port of NESL

-  nested data parallel language
 aimed at vector machines

71

port of NESL

-  nested data parallel language
 aimed at vector machines

-  we can run unmodified NESL programs
 in our kernel-mode VCODE interpreter

72

the first co-designed HRT: NDPC

-  Nested Data Parallelism in C/C++
-  subset of NESL

73

the first co-designed HRT: NDPC

-  Nested Data Parallelism in C/C++
-  subset of NESL
-  fork/join parallelism over
 flattened vector processing

74

the first co-designed HRT: NDPC

-  Nested Data Parallelism in C/C++
-  subset of NESL
-  fork/join parallelism over
 flattened vector processing
-  allows us to explore runtime/kernel
 co-design
- e.g. smart kernel-mode thread fork

75

parallel app

hybrid runtime!

user mode

kernel mode parallel app

parallel runtime
user mode

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization

model

specialized virtualization
model

parallel app

hybrid runtime!

parallel app

hybrid runtime!

parallel app

hybrid runtime!

several auxiliary HRTs spawned in!
less than a millisecond !

Regular OS (ROS)

specialized virtualization
model

specialized virtualization
model

specialized virtualization
model

76

to get started with your own Xeon Phi
prototype kernel:

77

to get started with your own Xeon Phi
prototype kernel:

•  follow our blog

•  use our tool (philix) to boot it and

leverage MPSS stack

78

to get started with your own Xeon Phi
prototype kernel:

•  follow our blog

•  use our tool (philix) to boot it and

leverage MPSS stack

find out more @ haltloop.com

79

to get started with your own Xeon Phi
prototype kernel:

•  follow our blog

•  use our tool (philix) to boot it and

leverage MPSS stack

