Planning and Optimization in TORQUE Resource Manager

Dalibor Klusáček^{1,2} Václav Chlumský¹ Hana Rudová²

¹CESNET, Czech Republic ²Faculty of Informatics, Masaryk University, Czech Republic

klusacek@cesnet.cz

HPDC 2015, Portland, Oregon, USA

Contribution

- new scheduler for TORQUE RM
- job schedule optimized by a metaheuristic
- improves the quality of job schedule (initial schedule built by backfilling)
- **applied in practice** (CERIT-SC system, ~ 5,000 CPUs, 7 clusters)

State of the art

- queue-based schedulers (PBS, Moab, Maui, Slurm, ...)
- backfilling (optimizes resource utilization/wait time/slowdown)
- further "tailoring" (fair-share, priorities, per user/group limits, ...)

Importance

- Metaheuristics are popular in "theoretical" works
 - results indicate improved performance wrt. current solutions
 - actual implementations and applications are very rare
- It is quite hard to make it work in the real life...
 - "theoretical" models are far from the needs of real providers/users
 - fast decisions
 - detailed system setups (priority, limits, fairness, ...)
 - multi-criteria optimization problems (performance, fairness, ...)
 - complex job specifications, job dependencies, SW licenses ...

Applied Solution

- Initial schedule built by conservative backfilling
- Schedule is periodically optimized using a **local-search inspired metaheuristic**, optimizing
 - performance (wait time and slowdown)
 - fairness (fair-share-like "max-min" approach)

schedule evaluation

Realism

- All major features of "classic" schedulers are supported
 - adaptation to dynamic events (inaccurate estimates, failures)
 - support of various limits concerning max. exec. time/CPU
 - **complex job specifications** (CPUs, RAM, HDD, SW-licenses,...)
 - **multi-resource fair-sharing** (CPU and RAM consumption)
 - inter-job dependencies
 - maintenance-aware planning (assuring that jobs complete prior a maintenance period)

Deployment

scientific cloud

- **CERIT-SC system** (~ 5,000 CPUs, 7 clusters)
- Since July 2014 (11 months)
- "before after" comparison

Conclusion

- Realistic application of a metaheuristic
 - improved performance both in the simulations and in the reality
 - detects and fixes "pathological" job assignments
- Schedule (execution plan) is available to the users and system administrators
 - (partial) predictability (planned start times may change)
- Easy (advanced) problem detection
 - bad job specification (no planned start time, very frequent)
- Easier setup of critical system constraints
 - e.g., too strict resource limits (planned start times are very high)