

Planning and Optimization in
TORQUE Resource Manager

Dalibor Klusáček1,2

Václav Chlumský1

Hana Rudová2

1CESNET, Czech Republic
2Faculty of Informatics, Masaryk University, Czech Republic

klusacek@cesnet.cz

HPDC 2015, Portland, Oregon, USA

Overview

● Contribution

– new scheduler for TORQUE RM

– job schedule optimized by a metaheuristic

– improves the quality of job schedule (initial schedule built by backfilling)

– applied in practice (CERIT-SC system, ~ 5,000 CPUs, 7 clusters)

● State of the art

– queue-based schedulers (PBS, Moab, Maui, Slurm, …)

– backfilling (optimizes resource utilization/wait time/slowdown)

– further “tailoring” (fair-share, priorities, per user/group limits, …)

Importance

● Metaheuristics are popular in “theoretical” works

– results indicate improved performance wrt. current solutions

– actual implementations and applications are very rare

● It is quite hard to make it work in the real life...

– “theoretical” models are far from the needs of real providers/users

● fast decisions
● detailed system setups (priority, limits, fairness, …)
● multi-criteria optimization problems (performance, fairness, …)
● complex job specifications, job dependencies, SW licenses …

Applied Solution

● Initial schedule built by conservative backfilling

● Schedule is periodically optimized using a local-search inspired
metaheuristic, optimizing

– performance (wait time and slowdown)

– fairness (fair-share-like “max-min” approach)

schedule evaluation
- wait time
- slowdown
- fairness

schedule optimization
- local search-inspired
 metaheuristic
- random job re-allocations

accept / reject modifications

new jobs

conservative
backfilling

current job schedule

Realism

● All major features of “classic” schedulers are supported

– adaptation to dynamic events (inaccurate estimates, failures)

– support of various limits concerning max. exec. time/CPU

– complex job specifications (CPUs, RAM, HDD, SW-licenses,...)

– multi-resource fair-sharing (CPU and RAM consumption)

– inter-job dependencies

– maintenance-aware planning (assuring that jobs complete prior a
maintenance period)

Deployment

● CERIT-SC system (~ 5,000 CPUs, 7 clusters)

● Since July 2014 (11 months)

● “before – after” comparison

Conclusion

● Realistic application of a metaheuristic

– improved performance both in the simulations and in the reality

– detects and fixes “pathological” job assignments

● Schedule (execution plan) is available to the users and system
administrators

– (partial) predictability (planned start times may change)

● Easy (advanced) problem detection

– bad job specification (no planned start time, very frequent)

● Easier setup of critical system constraints

– e.g., too strict resource limits (planned start times are very high)

