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As apps read/write more & more data, 
I/O becomes more important for 

performance. 
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Table 12. Typical per-simulation I/O requirements for the largest data-producing application 
codes on the NCCS LCF systems* 

Science 
domain Code Restart 

file size 
Restart 

frequency
Analysis 
file size 

Analysis 
dump 

frequency 
File type Analysis tools

Astrophysics 
CHIMERA 160 TB 1/hour 160 TB 1/hour 

pnetCDF or 
binary, 
collective 

IDL, xmgrace, 
EnSight 

VULCAN/2D 20 GB 1/day 200 GB 10/day Binary, 
HDF5 

VTK, Open-DX, 
IDL 

Climate POP 26 GB 1/hour 1.4 GB 
per field 1/minute Binary, 

1 serial file 
IDL, NCAR 
graphics 

Combustion S3D 5 TB 1/hour 5 TB 2/hour 
Binary, 
individual 
files 

TecPlot, VisIt, 
Post_S3D, 
Matlab 

Fusion GTC 20 TB 1/hour 10 GB 1/minute 
Binary, 
individual 
files 

IDL, gnuplot, 
Matlab, 
AVS/Express, 
EnSight 

Fusion GYRO 50 GB 1/hour 10 GB 1/minute Binary, 
collective 

IDL, VTK, 
Asymptote 

*A 1-PF LC system with 200 TB of memory is the assumed system. 
 

codes were found to write restart files on a per-processor basis to get the best performance on the system. 

Ideally, users would like to write out the data via pNetCDF or parallel HDF5, thereby producing a single 

inode per restart dump. Users also require that the system have minimal impact while writing the restart 

and analysis files, namely by keeping I/O overhead at less than 5% of the total run time. This study has 

found that the users would ideally like to generate restart files ranging from 10 to 80% of the total 

memory on the nodes used in the run, but often do much less (like 1–20%) because the I/O overhead 

would be much larger than 5%. This information, along with a conservative estimate of MTTI, helps set 

the restart dump frequency, which in turn can be used to determine a minimum write bandwidth to local 

storage. The prescription is given in Table 13; required local storage bandwidth can be reasonably 

estimated as the ratio of restart file size to time tolerated by the user necessary to write out the data. The 

time tolerated for output is usually some small fraction (5–10%) of the restart output periods. Application 

restart output periods are usually 1–2 hours for LC systems, set ultimately by the system MTTI or queue 

dwell-time maximum, which is often 24 hours (or less). 
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Fig. 3. I/O strategy used by jobs as a function of job size.

burden [1]. We wanted to see how application performance
varied according to the strategy chosen.

Figures 2 and 3 give an overview of the I/O interfaces and
access patterns, respectively, used by applications at various
job sizes. We see in Figure 2 that the POSIX interfaces were
used by the majority of jobs and performed the bulk of the
I/O, especially for reading and at smaller process counts. Some
applications used MPI-IO, particularly at the highest process
counts and for applications that primarily wrote data. So few
of the applications in our study used high-level libraries that
they would not have been visible in the graph.

Figure 3 shows that the I/O strategy used by jobs var-
ied considerably depending on the size of the job. Unique
files were the most common access method for small jobs,
whereas partially shared files were the most common access
method for large jobs. In terms of quantity of data, most I/O
was performed to files that were shared or partially shared.
The widespread use of partially shared files indicates that
applications are not relying on MPI-IO collective buffering
optimization but, rather, are performing their own aggregation
by writing and reading shared files from subsets of processes.

B. I/O-intensive projects

Not all the 39 projects captured by Darshan were significant
producers or consumers of data. Figure 4 illustrates how much
data was read and written by the ten projects that moved
the most data via Darshan-enabled jobs. The projects are
labeled according to their general application domain. The
first observation from this figure is that that a few projects
moved orders of magnitude more data than most others. The
project with the highest I/O usage, EarthScience, accessed a
total of 3.5 PiB of data. Another notable trend in Figure 4
is that eight of the top ten projects read more data than was
written. This is contrary to findings of previous scientific I/O
workload studies [13]. By categorizing the data by project we
see that the read/write mix varies considerably by application
domain.

Table II lists coverage statistics and application program-
mer interfaces (APIs) used by each of the projects shown
in Figure 4. Darshan instrumented over half of the core-
hours consumed by seven of the ten projects. NuclearPhysics,
Chemistry, and Turbulence3 were the exceptions and may
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Fig. 4. Data moved per project in Darshan-enabled jobs.

have generated significantly more I/O activity than is indicated
by Figure 4. The fourth column of Table II shows which
APIs were used directly by applications within each project.
P represents the POSIX open() interface, S represents the
POSIX stream fopen() interface, M represents MPI-IO, and
H represents HDF5. Every project used at least one of the
two POSIX interfaces, while four projects also used MPI-IO.
Energy1 notably utilized all four of HDF5, MPI-IO, POSIX,
and POSIX stream interfaces in its job workload.

This subset of projects also varies in how many files
are used. Figure 5 plots the number of files accessed by
application run according to its processor count for our ten
most I/O-intensive projects. If several application instances
were launched within a single job (as is common on Intrepid),
each instance is shown independently. Reinforcing Figure 3,
we see four rough categories: applications that show an N:N
trend, ones that show an N:1 trend, a group in the middle
exemplified by Turbulence3 that are subsetting (N:M), and
a fourth category of applications operating on no files. The
large number of application runs that operated on zero files is
surprising. Darshan does not track standard output or standard
error. One possible explanation is that projects appear to run
a few debug jobs to run diagnostic or preliminary tests that
write results only to standard out or standard error and then

TABLE II
DARSHAN COVERAGE OF HIGHLIGHTED PROJECTS

Job Core-Hour
Project Coverage Coverage APIsa
EarthScience 779/1488 10.9/11.8 M S,P
NuclearPhysics 1653/6159 11.3/62.7 M P
Energy1 994/1340 3.7/5.7 M H,M,S,P
Climate 32/130 2.0/3.3 M S
Energy2 384/1433 3.9/4.4 M S,P
Turbulence1 242/467 2.6/4.6 M M,S,P
CombustionPhysics 15/42 1.8/2.4 M S,P
Chemistry 28/144 0.1/0.6 M S
Turbulence2 70/157 0.3/0.3 M M,P
Turbulence3 172/418 0.1/13.3 M M,S,P

aP = POSIX, S = POSIX stream, M = MPI-IO, H = HDF5

~3.5 PB in 
2 months 
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burden [1]. We wanted to see how application performance
varied according to the strategy chosen.

Figures 2 and 3 give an overview of the I/O interfaces and
access patterns, respectively, used by applications at various
job sizes. We see in Figure 2 that the POSIX interfaces were
used by the majority of jobs and performed the bulk of the
I/O, especially for reading and at smaller process counts. Some
applications used MPI-IO, particularly at the highest process
counts and for applications that primarily wrote data. So few
of the applications in our study used high-level libraries that
they would not have been visible in the graph.

Figure 3 shows that the I/O strategy used by jobs var-
ied considerably depending on the size of the job. Unique
files were the most common access method for small jobs,
whereas partially shared files were the most common access
method for large jobs. In terms of quantity of data, most I/O
was performed to files that were shared or partially shared.
The widespread use of partially shared files indicates that
applications are not relying on MPI-IO collective buffering
optimization but, rather, are performing their own aggregation
by writing and reading shared files from subsets of processes.

B. I/O-intensive projects

Not all the 39 projects captured by Darshan were significant
producers or consumers of data. Figure 4 illustrates how much
data was read and written by the ten projects that moved
the most data via Darshan-enabled jobs. The projects are
labeled according to their general application domain. The
first observation from this figure is that that a few projects
moved orders of magnitude more data than most others. The
project with the highest I/O usage, EarthScience, accessed a
total of 3.5 PiB of data. Another notable trend in Figure 4
is that eight of the top ten projects read more data than was
written. This is contrary to findings of previous scientific I/O
workload studies [13]. By categorizing the data by project we
see that the read/write mix varies considerably by application
domain.

Table II lists coverage statistics and application program-
mer interfaces (APIs) used by each of the projects shown
in Figure 4. Darshan instrumented over half of the core-
hours consumed by seven of the ten projects. NuclearPhysics,
Chemistry, and Turbulence3 were the exceptions and may
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have generated significantly more I/O activity than is indicated
by Figure 4. The fourth column of Table II shows which
APIs were used directly by applications within each project.
P represents the POSIX open() interface, S represents the
POSIX stream fopen() interface, M represents MPI-IO, and
H represents HDF5. Every project used at least one of the
two POSIX interfaces, while four projects also used MPI-IO.
Energy1 notably utilized all four of HDF5, MPI-IO, POSIX,
and POSIX stream interfaces in its job workload.

This subset of projects also varies in how many files
are used. Figure 5 plots the number of files accessed by
application run according to its processor count for our ten
most I/O-intensive projects. If several application instances
were launched within a single job (as is common on Intrepid),
each instance is shown independently. Reinforcing Figure 3,
we see four rough categories: applications that show an N:N
trend, ones that show an N:1 trend, a group in the middle
exemplified by Turbulence3 that are subsetting (N:M), and
a fourth category of applications operating on no files. The
large number of application runs that operated on zero files is
surprising. Darshan does not track standard output or standard
error. One possible explanation is that projects appear to run
a few debug jobs to run diagnostic or preliminary tests that
write results only to standard out or standard error and then

TABLE II
DARSHAN COVERAGE OF HIGHLIGHTED PROJECTS

Job Core-Hour
Project Coverage Coverage APIsa
EarthScience 779/1488 10.9/11.8 M S,P
NuclearPhysics 1653/6159 11.3/62.7 M P
Energy1 994/1340 3.7/5.7 M H,M,S,P
Climate 32/130 2.0/3.3 M S
Energy2 384/1433 3.9/4.4 M S,P
Turbulence1 242/467 2.6/4.6 M M,S,P
CombustionPhysics 15/42 1.8/2.4 M S,P
Chemistry 28/144 0.1/0.6 M S
Turbulence2 70/157 0.3/0.3 M M,P
Turbulence3 172/418 0.1/13.3 M M,S,P

aP = POSIX, S = POSIX stream, M = MPI-IO, H = HDF5



We study the I/O behavior of thousands of 
applications on 3 large-scale supercomputers. 

•  Application-specific, platform-wide, cross-platform 
analysis. 

•  Portrait of state of HPC I/O usage. 

•  Application I/O analysis + visualization procedure. 

•  Help improve system utilization. 
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We analyze I/O logs captured by Darshan, 
a lightweight I/O characterization tool.  

•  Instruments I/O functions at multiple levels 

•  Reports key I/O characteristics 
•  Does not capture text I/O functions 

•  Low overhead à Automatically deployed on 
multiple platforms. 
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We break down I/O time into 4 
categories. 

I/O time: largest I/O time among all its processes 
 Total bytes 

 I/O time 
Aggregate I/O throughput =  

Global file Non-global file 

Metadata 
(Open, close, seek, …) 

Data transfer 
(read, write) 



I/O log dataset: 3 platforms, >1M jobs, 
>6 years combined. 
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Intrepid Mira Edison 
Architecture BG/P BG/Q Cray XC30 
Peak Flops 0.557 PF 10 PF 2.57 PF 
Cores 160K 768K 130K 
Total Storage 6 PB 24 PB 7.56 PB 
Peak I/O 
Throughput 

88 GB/s 240 GB/s 168 GB/s 

File System GPFS GPFS Lustre 
# of jobs  239K 137K 703K 
Time period 4 years 18 months 9 months 



I/O log dataset: 3 platforms, >1M jobs, 
>6 years combined. 
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Intrepid Mira Edison 
Architecture BG/P BG/Q Cray XC30 
Peak Flops 0.557 PF 10 PF 2.57 PF 
Cores 160K 768K 130K 
Total Storage 6 PB 24 PB 7.56 PB 
Peak I/O 
Throughput 

88 GB/s 240 GB/s 168 GB/s 

File System GPFS GPFS Lustre 
# of jobs  239K 137K 703K 
Time period 4 years 18 months 9 months 



PLATFORM-WIDE ANALYSIS 
Observations from 
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Very low I/O throughput is the norm. 
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System peak - 240 GB/s

10 USB

1 USB

1 B/s

1 KB/s

1 MB/s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB
Number of bytes transferred

I/O
 T

hr
ou

gh
pu

t

Jobs Count

1 - 10

11 - 100

101 - 500

501 - 1k

1k1 - 5k

5k1 - 10k

Most jobs transfer little data. Many big-
data jobs also have very low thruput. 
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System peak - 88 GB/s
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~50% of apps 
never transfer 
> 1GB 

~20% of apps 
use only text I/O 



I/O time usage is dominated by a small 
number of jobs/apps. 
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Improving the performance of the top 
15 apps can save a lot of I/O time. 
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Platform I/O 
time percent 

Percent of platform I/O time 
saved if min thruput = 1 GB/s  

Mira 83% 32% 
Intrepid 73% 31% 
Edison 70% 60% 



Early intervention by platform admins 
can help. 
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POSIX I/O is far more widely used than 
parallel I/O libraries. 

POSIX-only: 
•  Edison: 95% 
•  Intrepid: 80% 
•  Mira: 50% 
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No major I/O paradigm is always good or bad. 

 
 
 
 
 
 
 
 
Minor I/O paradigms that will not   

 scale: Text I/O, Serial I/O 
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File-per-process Global shared files Parallel I/O: File-per-Process

– All processes perform I/O 
to individual files.
•Limited by file system.

– Pattern does not scale at 
large process counts.
•Number of files creates 

bottleneck with metadata 
operations.
•Number of simultaneous 

disk accesses creates 
contention for file 
system resources.

14

Disk

Parallel I/O: Shared File

• Shared File
– Each process performs I/O 

to a single file which is 
shared.

– Performance
•Data layout within the 

shared file is very 
important.
•At large process counts 

contention can build for 
file system resources.

15

Disk

Pattern Combinations
• Subset of processes which perform I/O.

– Aggregation of a group of processes data. 
• Serializes I/O in group.

– I/O process may access independent files.
• Limits the number of files accessed.

– Group of processes perform parallel I/O to a shared file.
• Increases the number of shared files 

! increase file system usage.
• Decreases number of processes which access a shared file 

! decrease file system contention.

16

Subsetting I/O 
	
  



E.g.: File-per-proc can work well if a job 
has enough data, even with >1M files. 

Plasma1 is good. Physics4 is bad. 17	
  



APPLICATION-SPECIFIC 
ANALYSIS 

Help application’s users find 
I/O bottlenecks 

with simple analysis  
and visualization procedure.  
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Earth1 – Mira’s #1 I/O Consumer 

1.  Identify where the app spends most of its I/O time: 
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Most I/O time is spent in global metadata 

Global metadata Non-global metadata 
Global data I/O Non-global data I/O 

Not I/O time 



Earth1 – Mira’s #1 I/O Consumer 

2.  Identify which files or file type consume most time. 

#	
  files	
  &	
  Type	
   Bytes	
   Time	
  

49158	
  Local,	
  
POSIX	
  

619	
  GB	
   103s	
  

35	
  Global	
  
shared	
  

34	
  GB	
   596s	
  

24	
  MPI,	
  write	
  only	
   27s	
  

5	
  POSIX,	
  read	
  only	
   2s	
  

6	
  POSIX,	
  write	
  only	
   567s	
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3.  Examine per-file performance info 
   Each process writes in small pieces (< 256 KB) that 
   do not align with file system block boundaries. 

One typical job 



Application-specific analysis 

•  Very simple and user-friendly. 

•  Quickly identify the I/O bottleneck/inefficiencies. 
•  User can follow up with a tracing/debugging 

tool. 

•  We are working with platform admins to make it 
available to all users.  



CROSS-PLATFORM ANALYSIS 
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How does an app’s scale (# procs, # bytes) and 
   I/O thruput change? Why? 

Platform 1 
Platform 2 



Earth1: Intrepid #4 à Mira #1. 
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Earth1’s POSIX global shared files’ 
metadata time didn’t scale well. 
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Contributions 
•  Study I/O behavior of thousands of apps, >1M I/O 

logs, 6 years in combine, on 3 supercomputers. 
•  Application-specific, platform-wide, cross-platform 

analysis. 

•  Portrait of state of HPC I/O usage. 

•  Application I/O analysis + visualization procedure. 

•  Help improve system utilization. 
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