
A Multiplatform Study of I/O Behavior
on Petascale Supercomputers

Huong Luu*, Marianne Winslett*, William Gropp*, Robert Ross+,
Philip Carns+, Kevin Harms+, Prabhat^, Suren Byna^, Yushu Yao^

*: University of Illinois at Urbana – Champaign
+: Argonne National Laboratory
^: Lawrence Berkeley National Laboratory

As apps read/write more & more data,
I/O becomes more important for

performance.

2	

 National Center for Computational Sciences

 22

Table 12. Typical per-simulation I/O requirements for the largest data-producing application
codes on the NCCS LCF systems*

Science
domain Code Restart

file size
Restart

frequency
Analysis
file size

Analysis
dump

frequency
File type Analysis tools

Astrophysics
CHIMERA 160 TB 1/hour 160 TB 1/hour

pnetCDF or
binary,
collective

IDL, xmgrace,
EnSight

VULCAN/2D 20 GB 1/day 200 GB 10/day Binary,
HDF5

VTK, Open-DX,
IDL

Climate POP 26 GB 1/hour 1.4 GB
per field 1/minute Binary,

1 serial file
IDL, NCAR
graphics

Combustion S3D 5 TB 1/hour 5 TB 2/hour
Binary,
individual
files

TecPlot, VisIt,
Post_S3D,
Matlab

Fusion GTC 20 TB 1/hour 10 GB 1/minute
Binary,
individual
files

IDL, gnuplot,
Matlab,
AVS/Express,
EnSight

Fusion GYRO 50 GB 1/hour 10 GB 1/minute Binary,
collective

IDL, VTK,
Asymptote

*A 1-PF LC system with 200 TB of memory is the assumed system.

codes were found to write restart files on a per-processor basis to get the best performance on the system.

Ideally, users would like to write out the data via pNetCDF or parallel HDF5, thereby producing a single

inode per restart dump. Users also require that the system have minimal impact while writing the restart

and analysis files, namely by keeping I/O overhead at less than 5% of the total run time. This study has

found that the users would ideally like to generate restart files ranging from 10 to 80% of the total

memory on the nodes used in the run, but often do much less (like 1–20%) because the I/O overhead

would be much larger than 5%. This information, along with a conservative estimate of MTTI, helps set

the restart dump frequency, which in turn can be used to determine a minimum write bandwidth to local

storage. The prescription is given in Table 13; required local storage bandwidth can be reasonably

estimated as the ratio of restart file size to time tolerated by the user necessary to write out the data. The

time tolerated for output is usually some small fraction (5–10%) of the restart output periods. Application

restart output periods are usually 1–2 hours for LC systems, set ultimately by the system MTTI or queue

dwell-time maximum, which is often 24 hours (or less).

100

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

P
er

ce
nt

ag
e

of
 d

at
a

Job size (Number of processes)

Shared
Unique
Partial Shared

WritingReading

Fig. 3. I/O strategy used by jobs as a function of job size.

burden [1]. We wanted to see how application performance
varied according to the strategy chosen.

Figures 2 and 3 give an overview of the I/O interfaces and
access patterns, respectively, used by applications at various
job sizes. We see in Figure 2 that the POSIX interfaces were
used by the majority of jobs and performed the bulk of the
I/O, especially for reading and at smaller process counts. Some
applications used MPI-IO, particularly at the highest process
counts and for applications that primarily wrote data. So few
of the applications in our study used high-level libraries that
they would not have been visible in the graph.

Figure 3 shows that the I/O strategy used by jobs var-
ied considerably depending on the size of the job. Unique
files were the most common access method for small jobs,
whereas partially shared files were the most common access
method for large jobs. In terms of quantity of data, most I/O
was performed to files that were shared or partially shared.
The widespread use of partially shared files indicates that
applications are not relying on MPI-IO collective buffering
optimization but, rather, are performing their own aggregation
by writing and reading shared files from subsets of processes.

B. I/O-intensive projects

Not all the 39 projects captured by Darshan were significant
producers or consumers of data. Figure 4 illustrates how much
data was read and written by the ten projects that moved
the most data via Darshan-enabled jobs. The projects are
labeled according to their general application domain. The
first observation from this figure is that that a few projects
moved orders of magnitude more data than most others. The
project with the highest I/O usage, EarthScience, accessed a
total of 3.5 PiB of data. Another notable trend in Figure 4
is that eight of the top ten projects read more data than was
written. This is contrary to findings of previous scientific I/O
workload studies [13]. By categorizing the data by project we
see that the read/write mix varies considerably by application
domain.

Table II lists coverage statistics and application program-
mer interfaces (APIs) used by each of the projects shown
in Figure 4. Darshan instrumented over half of the core-
hours consumed by seven of the ten projects. NuclearPhysics,
Chemistry, and Turbulence3 were the exceptions and may

 1

 10

 100

 1000

 10000

EarthScience

NuclearPhysics

Energy1

Clim
ate

Energy2

Turbulence1

Com
bustionPhysics

Chem
istry

Turbulence2

Turbulence3

N
um

be
r

of
 T

iB

Project

Write
Read

Fig. 4. Data moved per project in Darshan-enabled jobs.

have generated significantly more I/O activity than is indicated
by Figure 4. The fourth column of Table II shows which
APIs were used directly by applications within each project.
P represents the POSIX open() interface, S represents the
POSIX stream fopen() interface, M represents MPI-IO, and
H represents HDF5. Every project used at least one of the
two POSIX interfaces, while four projects also used MPI-IO.
Energy1 notably utilized all four of HDF5, MPI-IO, POSIX,
and POSIX stream interfaces in its job workload.

This subset of projects also varies in how many files
are used. Figure 5 plots the number of files accessed by
application run according to its processor count for our ten
most I/O-intensive projects. If several application instances
were launched within a single job (as is common on Intrepid),
each instance is shown independently. Reinforcing Figure 3,
we see four rough categories: applications that show an N:N
trend, ones that show an N:1 trend, a group in the middle
exemplified by Turbulence3 that are subsetting (N:M), and
a fourth category of applications operating on no files. The
large number of application runs that operated on zero files is
surprising. Darshan does not track standard output or standard
error. One possible explanation is that projects appear to run
a few debug jobs to run diagnostic or preliminary tests that
write results only to standard out or standard error and then

TABLE II
DARSHAN COVERAGE OF HIGHLIGHTED PROJECTS

Job Core-Hour
Project Coverage Coverage APIsa
EarthScience 779/1488 10.9/11.8 M S,P
NuclearPhysics 1653/6159 11.3/62.7 M P
Energy1 994/1340 3.7/5.7 M H,M,S,P
Climate 32/130 2.0/3.3 M S
Energy2 384/1433 3.9/4.4 M S,P
Turbulence1 242/467 2.6/4.6 M M,S,P
CombustionPhysics 15/42 1.8/2.4 M S,P
Chemistry 28/144 0.1/0.6 M S
Turbulence2 70/157 0.3/0.3 M M,P
Turbulence3 172/418 0.1/13.3 M M,S,P

aP = POSIX, S = POSIX stream, M = MPI-IO, H = HDF5

~3.5 PB in
2 months

100

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

P
er

ce
nt

ag
e

of
 d

at
a

Job size (Number of processes)

Shared
Unique
Partial Shared

WritingReading

Fig. 3. I/O strategy used by jobs as a function of job size.

burden [1]. We wanted to see how application performance
varied according to the strategy chosen.

Figures 2 and 3 give an overview of the I/O interfaces and
access patterns, respectively, used by applications at various
job sizes. We see in Figure 2 that the POSIX interfaces were
used by the majority of jobs and performed the bulk of the
I/O, especially for reading and at smaller process counts. Some
applications used MPI-IO, particularly at the highest process
counts and for applications that primarily wrote data. So few
of the applications in our study used high-level libraries that
they would not have been visible in the graph.

Figure 3 shows that the I/O strategy used by jobs var-
ied considerably depending on the size of the job. Unique
files were the most common access method for small jobs,
whereas partially shared files were the most common access
method for large jobs. In terms of quantity of data, most I/O
was performed to files that were shared or partially shared.
The widespread use of partially shared files indicates that
applications are not relying on MPI-IO collective buffering
optimization but, rather, are performing their own aggregation
by writing and reading shared files from subsets of processes.

B. I/O-intensive projects

Not all the 39 projects captured by Darshan were significant
producers or consumers of data. Figure 4 illustrates how much
data was read and written by the ten projects that moved
the most data via Darshan-enabled jobs. The projects are
labeled according to their general application domain. The
first observation from this figure is that that a few projects
moved orders of magnitude more data than most others. The
project with the highest I/O usage, EarthScience, accessed a
total of 3.5 PiB of data. Another notable trend in Figure 4
is that eight of the top ten projects read more data than was
written. This is contrary to findings of previous scientific I/O
workload studies [13]. By categorizing the data by project we
see that the read/write mix varies considerably by application
domain.

Table II lists coverage statistics and application program-
mer interfaces (APIs) used by each of the projects shown
in Figure 4. Darshan instrumented over half of the core-
hours consumed by seven of the ten projects. NuclearPhysics,
Chemistry, and Turbulence3 were the exceptions and may

 1

 10

 100

 1000

 10000

EarthScience

NuclearPhysics

Energy1

Clim
ate

Energy2

Turbulence1

Com
bustionPhysics

Chem
istry

Turbulence2

Turbulence3

N
um

be
r

of
 T

iB

Project

Write
Read

Fig. 4. Data moved per project in Darshan-enabled jobs.

have generated significantly more I/O activity than is indicated
by Figure 4. The fourth column of Table II shows which
APIs were used directly by applications within each project.
P represents the POSIX open() interface, S represents the
POSIX stream fopen() interface, M represents MPI-IO, and
H represents HDF5. Every project used at least one of the
two POSIX interfaces, while four projects also used MPI-IO.
Energy1 notably utilized all four of HDF5, MPI-IO, POSIX,
and POSIX stream interfaces in its job workload.

This subset of projects also varies in how many files
are used. Figure 5 plots the number of files accessed by
application run according to its processor count for our ten
most I/O-intensive projects. If several application instances
were launched within a single job (as is common on Intrepid),
each instance is shown independently. Reinforcing Figure 3,
we see four rough categories: applications that show an N:N
trend, ones that show an N:1 trend, a group in the middle
exemplified by Turbulence3 that are subsetting (N:M), and
a fourth category of applications operating on no files. The
large number of application runs that operated on zero files is
surprising. Darshan does not track standard output or standard
error. One possible explanation is that projects appear to run
a few debug jobs to run diagnostic or preliminary tests that
write results only to standard out or standard error and then

TABLE II
DARSHAN COVERAGE OF HIGHLIGHTED PROJECTS

Job Core-Hour
Project Coverage Coverage APIsa
EarthScience 779/1488 10.9/11.8 M S,P
NuclearPhysics 1653/6159 11.3/62.7 M P
Energy1 994/1340 3.7/5.7 M H,M,S,P
Climate 32/130 2.0/3.3 M S
Energy2 384/1433 3.9/4.4 M S,P
Turbulence1 242/467 2.6/4.6 M M,S,P
CombustionPhysics 15/42 1.8/2.4 M S,P
Chemistry 28/144 0.1/0.6 M S
Turbulence2 70/157 0.3/0.3 M M,P
Turbulence3 172/418 0.1/13.3 M M,S,P

aP = POSIX, S = POSIX stream, M = MPI-IO, H = HDF5

We study the I/O behavior of thousands of
applications on 3 large-scale supercomputers.

•  Application-specific, platform-wide, cross-platform
analysis.

•  Portrait of state of HPC I/O usage.

•  Application I/O analysis + visualization procedure.

•  Help improve system utilization.

3	

We analyze I/O logs captured by Darshan,
a lightweight I/O characterization tool.

•  Instruments I/O functions at multiple levels

•  Reports key I/O characteristics
•  Does not capture text I/O functions

•  Low overhead à Automatically deployed on
multiple platforms.

4	

We break down I/O time into 4
categories.

I/O time: largest I/O time among all its processes
 Total bytes

 I/O time
Aggregate I/O throughput =

Global file Non-global file

Metadata
(Open, close, seek, …)

Data transfer
(read, write)

I/O log dataset: 3 platforms, >1M jobs,
>6 years combined.

6	

Intrepid Mira Edison
Architecture BG/P BG/Q Cray XC30
Peak Flops 0.557 PF 10 PF 2.57 PF
Cores 160K 768K 130K
Total Storage 6 PB 24 PB 7.56 PB
Peak I/O
Throughput

88 GB/s 240 GB/s 168 GB/s

File System GPFS GPFS Lustre
of jobs 239K 137K 703K
Time period 4 years 18 months 9 months

I/O log dataset: 3 platforms, >1M jobs,
>6 years combined.

7	

Intrepid Mira Edison
Architecture BG/P BG/Q Cray XC30
Peak Flops 0.557 PF 10 PF 2.57 PF
Cores 160K 768K 130K
Total Storage 6 PB 24 PB 7.56 PB
Peak I/O
Throughput

88 GB/s 240 GB/s 168 GB/s

File System GPFS GPFS Lustre
of jobs 239K 137K 703K
Time period 4 years 18 months 9 months

PLATFORM-WIDE ANALYSIS
Observations from

8	

Very low I/O throughput is the norm.

9	

1 KB/s

1 MB/s

1 GB/s

1 TB/s

0 25% 50% 75% 100%
Applications

I/O
 T

hr
ou

gh
pu

t
platform Edison Intrepid Mira

Applications' Max Throughput

System peak - 240 GB/s

10 USB

1 USB

1 B/s

1 KB/s

1 MB/s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB
Number of bytes transferred

I/O
 T

hr
ou

gh
pu

t

Jobs Count

1 - 10

11 - 100

101 - 500

501 - 1k

1k1 - 5k

5k1 - 10k

Most jobs transfer little data. Many big-
data jobs also have very low thruput.

10	

System peak - 88 GB/s

1% peak

1 B/s

1 KB/s

1 MB/s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB
Number of bytes transferred

I/O
 T

hr
ou

gh
pu

t

Jobs Count

1 - 10

11 - 100

101 - 500

501 - 1k

1k1 - 5k

5k1 - 10k

10k1 - 100k

Intrepid: Jobs I/O Throughput

M
ira

 J
ob

s’
 I/

O
 T

hr
ou

gh
pu

t

~50% of apps
never transfer
> 1GB

~20% of apps
use only text I/O

I/O time usage is dominated by a small
number of jobs/apps.

12	

Improving the performance of the top
15 apps can save a lot of I/O time.

13	

Platform I/O
time percent

Percent of platform I/O time
saved if min thruput = 1 GB/s

Mira 83% 32%
Intrepid 73% 31%
Edison 70% 60%

Early intervention by platform admins
can help.

14	

POSIX I/O is far more widely used than
parallel I/O libraries.

POSIX-only:
•  Edison: 95%
•  Intrepid: 80%
•  Mira: 50%

0

100,000

200,000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processesN

um
be

r
of

 jo
bs interface MPI POSIX

Edison

0

20000

40000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processes

N
um

be
r

of
 jo

bs

Intrepid

0

10000

20000

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Number of processes

N
um

be
r

of
 jo

bs

Mira

15	

0

100,000

200,000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processesN

um
be

r
of

 jo
bs interface MPI POSIX

Edison

0

20000

40000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processes

N
um

be
r

of
 jo

bs

Intrepid

0

10000

20000

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Number of processes

N
um

be
r

of
 jo

bs

Mira

0

100,000

200,000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processesN

um
be

r o
f j

ob
s interface MPI POSIX

Edison

0

20000

40000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processes

N
um

be
r o

f j
ob

s Intrepid

0

10000

20000

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Number of processes

N
um

be
r o

f j
ob

s Mira

No major I/O paradigm is always good or bad.

Minor I/O paradigms that will not

 scale: Text I/O, Serial I/O
16	

File-per-process Global shared files Parallel I/O: File-per-Process

– All processes perform I/O
to individual files.
•Limited by file system.

– Pattern does not scale at
large process counts.
•Number of files creates

bottleneck with metadata
operations.
•Number of simultaneous

disk accesses creates
contention for file
system resources.

14

Disk

Parallel I/O: Shared File

• Shared File
– Each process performs I/O

to a single file which is
shared.

– Performance
•Data layout within the

shared file is very
important.
•At large process counts

contention can build for
file system resources.

15

Disk

Pattern Combinations
• Subset of processes which perform I/O.

– Aggregation of a group of processes data.
• Serializes I/O in group.

– I/O process may access independent files.
• Limits the number of files accessed.

– Group of processes perform parallel I/O to a shared file.
• Increases the number of shared files

! increase file system usage.
• Decreases number of processes which access a shared file

! decrease file system contention.

16

Subsetting I/O
	

E.g.: File-per-proc can work well if a job
has enough data, even with >1M files.

Plasma1 is good. Physics4 is bad. 17	

APPLICATION-SPECIFIC
ANALYSIS

Help application’s users find
I/O bottlenecks

with simple analysis
and visualization procedure.

18	

Earth1 – Mira’s #1 I/O Consumer

1.  Identify where the app spends most of its I/O time:

19	

Most I/O time is spent in global metadata

Global metadata Non-global metadata
Global data I/O Non-global data I/O

Not I/O time

Earth1 – Mira’s #1 I/O Consumer

2.  Identify which files or file type consume most time.

#	
 files	
 &	
 Type	
 Bytes	
 Time	

49158	
 Local,	

POSIX	

619	
 GB	
 103s	

35	
 Global	

shared	

34	
 GB	
 596s	

24	
 MPI,	
 write	
 only	
 27s	

5	
 POSIX,	
 read	
 only	
 2s	

6	
 POSIX,	
 write	
 only	
 567s	

20	

3.  Examine per-file performance info
 Each process writes in small pieces (< 256 KB) that
 do not align with file system block boundaries.

One typical job

Application-specific analysis

•  Very simple and user-friendly.

•  Quickly identify the I/O bottleneck/inefficiencies.
•  User can follow up with a tracing/debugging

tool.

•  We are working with platform admins to make it
available to all users.

CROSS-PLATFORM ANALYSIS

22	

How does an app’s scale (# procs, # bytes) and
 I/O thruput change? Why?

Platform 1
Platform 2

Earth1: Intrepid #4 à Mira #1.

23	

Earth1’s POSIX global shared files’
metadata time didn’t scale well.

24	

Contributions
•  Study I/O behavior of thousands of apps, >1M I/O

logs, 6 years in combine, on 3 supercomputers.
•  Application-specific, platform-wide, cross-platform

analysis.

•  Portrait of state of HPC I/O usage.

•  Application I/O analysis + visualization procedure.

•  Help improve system utilization.

25	

