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HPC Architecture 
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�  Move computation to data 
�  Improved data locality 
�  Reduced power consumption 
�  Reduced network traffic 
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Simulation 
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Visualization 

Supercomputer 

Shared Storage Cluster 

Processing Cluster 

Problem: massive data movement  
over interconnects 

Traditional In Situ Data Processing 



Challenge: Predictable High Performance 
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�  Tightly coupled HPC workloads are sensitive to OS noise 
and overhead [Petrini SC’03, Ferreira SC’08, Hoefler SC’10] 

�  Specialized kernels for predictable performance 
�  Tailored from Linux: CNL for Cray supercomputers 

�  Lightweight kernels (LWK) developed from scratch: IBM CNK, Kitten 

�  Data processing workloads favor Linux environments 

�  Cross workload interference 

�  Shared hardware (CPU time, cache, memory bandwidth) 

�  Shared system software 

How to provide both Linux and specialized kernels on the same node, 
while ensuring performance isolation?? 



Approach: Lightweight Co-Kernels 
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�  Hardware resources on one node are dynamically composed into 
multiple partitions or enclaves 

�  Independent software stacks are deployed on each enclave 
� Optimized for certain applications and hardware 

�  Performance isolation at both the software and hardware level 
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Agenda 
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�  Introduction 

�  The Pisces Lightweight Co-Kernel Architecture 

�  Implementation 

�  Evaluation 

�  Related Work 

�  Conclusion 



Building Blocks: Kitten and Palacios 

�  the Kitten Lightweight Kernel (LWK) 

�  Goal: provide predictable performance for massively parallel HPC applications 

�  Simple resource management policies 

�  Limited kernel I/O support + direct user-level network access  

�  the Palacios Lightweight Virtual Machine Monitor (VMM) 

�  Goal: predictable performance  

�  Lightweight resource management policies 

�  Established history of providing virtualized environments for HPC [Lange et al. 
VEE ’11, Kocoloski and Lange ROSS ‘12] 

Kitten:  https://software.sandia.gov/trac/kitten 
Palacios: http://www.prognosticlab.org/palacios  http://www.v3vee.org/ 
  
 



The Pisces Lightweight Co-Kernel Architecture 
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http://www.prognosticlab.org/pisces/ 
 

Pisces Design Goals 

�  Performance isolation at both software and hardware level 

�  Dynamic creation of resizable enclaves 

�  Isolated virtual environments 



Design Decisions 
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�  Elimination of cross OS dependencies 
�  Each enclave must implement its own complete set of supported 

system calls 
� No system call forwarding is allowed 

�  Internalized management of I/O 
�  Each enclave must provide its own I/O device drivers and manage 

its hardware resources directly 

�  Userspace cross enclave communication 
� Cross enclave communication is not a kernel provided feature  
�  Explicitly setup cross enclave shared memory at runtime (XEMEM) 

�  Using virtualization to provide missing OS features  



Cross Kernel Communication 
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XEMEM: Efficient Shared Memory for Composed 
Applications on Multi-OS/R Exascale Systems  
[Kocoloski and Lange, HPDC ‘15]  
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�  Related Work 
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Challenges & Approaches 
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�  How to boot a co-kernel? 
�  Hot-remove resources from Linux, and load co-kernel 
�  Reuse Linux boot code with modified target kernel address 
�  Restrict the Kitten co-kernel to access assigned resources only 

�  How to share hardware resources among kernels? 
�  Hot-remove from Linux + direct assignment and adjustment (e.g. 

CPU cores, memory blocks, PCI devices) 
�  Managed by Linux and Pisces (e.g. IOMMU) 

�  How to communicate with a co-kernel? 
�  Kernel level: IPI + shared memory, primarily for Pisces commands 
�  Application level: XEMEM [Kocoloski HPDC’15] 

�  How to route device interrupts? 
 
 



I/O Interrupt Routing 
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Legacy Interrupt Forwarding Direct Device Assignment (w/ MSI) 

•  Legacy interrupt vectors are potentially shared among multiple devices 
•  Pisces provides IRQ forwarding service 
•  IRQ forwarding is only used during initialization for PCI devices 

•  Modern PCI devices support dedicated interrupt vectors (MSI/MSI-X) 
•  Directly route to the corresponding enclave 



Implementation 
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�  Pisces 
�  Linux kernel module supports unmodified Linux kernels 

(2.6.3x – 3.x.y) 
� Co-kernel initialization and management 

�  Kitten (~9000 LOC changes) 
� Manage assigned hardware resources 
� Dynamic resource assignment 
� Kernel level communication channel 

�  Palacios (~5000 LOC changes) 
� Dynamic resource assignment 
� Command forwarding channel 

Pisces: http://www.prognosticlab.org/pisces/ 
Kitten:  https://software.sandia.gov/trac/kitten 
Palacios: http://www.prognosticlab.org/palacios  http://www.v3vee.org/ 
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Evaluation 
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�  8 node Dell R450 cluster  

� Two six-core Intel “Ivy-Bridge” Xeon processors 

�  24GB RAM split across two NUMA domains 

� QDR Infiniband 

� CentOS 7, Linux kernel 3.16 

�  For performance isolation experiments, the hardware is 

partitioned by NUMA domains. 

�  i.e. Linux on one NUMA domain, co-kernel on the other 



Fast Pisces Management Operations 
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Operations Latency (ms) 

Booting a co-kernel 265.98 

Adding a single CPU core 33.74 

Adding a 128MB memory block  82.66 

Adding an Ethernet NIC  118.98  



Eliminating Cross Kernel Dependencies 
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solitary workloads (us) w/ other workloads (us) 

Linux 3.05 3.48 

co-kernel fwd 6.12 14.00 

co-kernel 0.39 0.36 

Execution Time of getpid() 

�  Co-kernel has the best average performance 
�  Co-kernel has the most consistent performance 
�  System call forwarding has longer latency and suffers from 

cross stack performance interference 



Noise Analysis 
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Single Node Performance 
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8 Node Performance 
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Co-VMM for HPC in the Cloud 
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Related Work 
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� Exascale operating systems and runtimes (OS/Rs) 
�  Hobbes (SNL, LBNL, LANL, ORNL, U. Pitt, various universities) 

�  Argo (ANL, LLNL, PNNL, various universities) 

�  FusedOS (Intel / IBM) 

� mOS (Intel) 

� McKernel (RIKEN AICS, University of Tokyo) 

Our uniqueness: performance isolation, dynamic 
resource composition, lightweight virtualization  



Conclusion 
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�  Design and implementation of the Pisces co-kernel architecture 

�  Pisces framework 

� Kitten co-kernel 

�  Palacios VMM for Kitten co-kernel 

�  Demonstrated that the co-kernel architecture provides 

� Optimized execution environments for in situ processing 

�  Performance isolation 

https://software.sandia.gov/trac/kitten 
 

http://www.prognosticlab.org/pisces/ 
 
 

http://www.prognosticlab.org/palacios 
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