
Jiannan Ouyang, Brian Kocoloski, John Lange

The Prognostic Lab @ University of Pittsburgh

Kevin Pedretti

Sandia National Laboratories

HPDC 2015

Achieving Performance Isolation
with Lightweight Co-Kernels

HPC Architecture

2

�  Move computation to data
�  Improved data locality
�  Reduced power consumption
�  Reduced network traffic

Compute Node

Operating System and Runtimes
(OS/R)

Simulation
Analytic /

Visualization

Supercomputer

Shared Storage Cluster

Processing Cluster

Problem: massive data movement
over interconnects

Traditional In Situ Data Processing

Challenge: Predictable High Performance

3

�  Tightly coupled HPC workloads are sensitive to OS noise
and overhead [Petrini SC’03, Ferreira SC’08, Hoefler SC’10]

�  Specialized kernels for predictable performance
�  Tailored from Linux: CNL for Cray supercomputers

�  Lightweight kernels (LWK) developed from scratch: IBM CNK, Kitten

�  Data processing workloads favor Linux environments

�  Cross workload interference

�  Shared hardware (CPU time, cache, memory bandwidth)

�  Shared system software

How to provide both Linux and specialized kernels on the same node,
while ensuring performance isolation??

Approach: Lightweight Co-Kernels

4

�  Hardware resources on one node are dynamically composed into
multiple partitions or enclaves

�  Independent software stacks are deployed on each enclave
� Optimized for certain applications and hardware

�  Performance isolation at both the software and hardware level

Hardware
Linux LWK

Analytic /
Visualization

Hardware
Linux

Analytic /
Visualization Simulation

Simulation

Agenda

5

�  Introduction

�  The Pisces Lightweight Co-Kernel Architecture

�  Implementation

�  Evaluation

�  Related Work

�  Conclusion

Building Blocks: Kitten and Palacios

�  the Kitten Lightweight Kernel (LWK)

�  Goal: provide predictable performance for massively parallel HPC applications

�  Simple resource management policies

�  Limited kernel I/O support + direct user-level network access

�  the Palacios Lightweight Virtual Machine Monitor (VMM)

�  Goal: predictable performance

�  Lightweight resource management policies

�  Established history of providing virtualized environments for HPC [Lange et al.
VEE ’11, Kocoloski and Lange ROSS ‘12]

Kitten: https://software.sandia.gov/trac/kitten
Palacios: http://www.prognosticlab.org/palacios http://www.v3vee.org/

The Pisces Lightweight Co-Kernel Architecture

7

Linux

Hardware

Isolated Virtual
Machine

Applications
+

Virtual
MachinesPalacios VMM

Kitten Co-kernel
(1)

Kitten Co-kernel
(2)

Isolated
Application

Pisces Pisces

http://www.prognosticlab.org/pisces/

Pisces Design Goals

�  Performance isolation at both software and hardware level

�  Dynamic creation of resizable enclaves

�  Isolated virtual environments

Design Decisions

8

�  Elimination of cross OS dependencies
�  Each enclave must implement its own complete set of supported

system calls
� No system call forwarding is allowed

�  Internalized management of I/O
�  Each enclave must provide its own I/O device drivers and manage

its hardware resources directly

�  Userspace cross enclave communication
� Cross enclave communication is not a kernel provided feature
�  Explicitly setup cross enclave shared memory at runtime (XEMEM)

�  Using virtualization to provide missing OS features

Cross Kernel Communication

9

Hardware'Par))on' Hardware'Par))on'

User%
Context%

Kernel%
Context% Linux'

Cross%Kernel*
Messages*

Control'
Process'

Control'
Process'

Shared*Mem*
*Ctrl*Channel*

Linux'
Compa)ble'
Workloads'

Isolated'
Processes''

+'
Virtual'

Machines'

Shared*Mem*
Communica6on*Channels*

Ki@en'
CoAKernel'

XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems
[Kocoloski and Lange, HPDC ‘15]

Agenda

10

�  Introduction

�  The Pisces Lightweight Co-Kernel Architecture

�  Implementation

�  Evaluation

�  Related Work

�  Conclusion

Challenges & Approaches

11

�  How to boot a co-kernel?
�  Hot-remove resources from Linux, and load co-kernel
�  Reuse Linux boot code with modified target kernel address
�  Restrict the Kitten co-kernel to access assigned resources only

�  How to share hardware resources among kernels?
�  Hot-remove from Linux + direct assignment and adjustment (e.g.

CPU cores, memory blocks, PCI devices)
�  Managed by Linux and Pisces (e.g. IOMMU)

�  How to communicate with a co-kernel?
�  Kernel level: IPI + shared memory, primarily for Pisces commands
�  Application level: XEMEM [Kocoloski HPDC’15]

�  How to route device interrupts?

I/O Interrupt Routing

12

Legacy
Device

IO-APIC

Management
Kernel Co-Kernel

IRQ
Forwarder

IRQ
Handler

MSI/MSI-X
Device

Management
Kernel Co-Kernel

IRQ
Forwarder

IRQ
Handler

MSI/MSI-X
Device

MSI MSI
INTx

IPI

Legacy Interrupt Forwarding Direct Device Assignment (w/ MSI)

•  Legacy interrupt vectors are potentially shared among multiple devices
•  Pisces provides IRQ forwarding service
•  IRQ forwarding is only used during initialization for PCI devices

•  Modern PCI devices support dedicated interrupt vectors (MSI/MSI-X)
•  Directly route to the corresponding enclave

Implementation

13

�  Pisces
�  Linux kernel module supports unmodified Linux kernels

(2.6.3x – 3.x.y)
� Co-kernel initialization and management

�  Kitten (~9000 LOC changes)
� Manage assigned hardware resources
� Dynamic resource assignment
� Kernel level communication channel

�  Palacios (~5000 LOC changes)
� Dynamic resource assignment
� Command forwarding channel

Pisces: http://www.prognosticlab.org/pisces/
Kitten: https://software.sandia.gov/trac/kitten
Palacios: http://www.prognosticlab.org/palacios http://www.v3vee.org/

Agenda

14

�  Introduction

�  The Pisces Lightweight Co-Kernel Architecture

�  Implementation

�  Evaluation

�  Related Work

�  Conclusion

Evaluation

15

�  8 node Dell R450 cluster

� Two six-core Intel “Ivy-Bridge” Xeon processors

�  24GB RAM split across two NUMA domains

� QDR Infiniband

� CentOS 7, Linux kernel 3.16

�  For performance isolation experiments, the hardware is

partitioned by NUMA domains.

�  i.e. Linux on one NUMA domain, co-kernel on the other

Fast Pisces Management Operations

16

Operations Latency (ms)

Booting a co-kernel 265.98

Adding a single CPU core 33.74

Adding a 128MB memory block 82.66

Adding an Ethernet NIC 118.98

Eliminating Cross Kernel Dependencies

17

solitary workloads (us) w/ other workloads (us)

Linux 3.05 3.48

co-kernel fwd 6.12 14.00

co-kernel 0.39 0.36

Execution Time of getpid()

�  Co-kernel has the best average performance
�  Co-kernel has the most consistent performance
�  System call forwarding has longer latency and suffers from

cross stack performance interference

Noise Analysis

18

 0

 5

 10

 15

 20

 0 1 2 3 4 5
La

te
nc

y
(u

s)
Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5
Time (seconds)

(b) with competing workloads

 0

 5

 10

 15

 20

 0 1 2 3 4 5

La
te

nc
y

(u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5
Time (seconds)

(b) with competing workloads

Linux

Kitten co-kernel

Co-Kernel: less noise + better isolation
* Each point represents the latency of an OS interruption

Single Node Performance

19

0

1

CentOS Kitten/KVM co-Kernel

82

83

84

85

C
om

pl
et

io
n

T
im

e
(S

ec
on

ds
)

without bg
with bg

0

250

CentOS Kitten/KVM co-Kernel

20250

20500

20750

21000

21250

T
hr

ou
gh

pu
t (

G
U

P
S

)

without bg
with bg

CoMD Performance Stream Performance

Co-Kernel: consist performance + performance isolation

8 Node Performance

20

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t

(
G
F
L
O
P
/
s
)

Number of Nodes

co-VMM
native

KVM
co-VMM bg
native bg

KVM bg

w/o bg: co-VMM achieves native Linux performance
w/ bg: co-VMM outperforms native Linux

Co-VMM for HPC in the Cloud

21

 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVM

CDF of HPCCG Performance (running with Hadoop, 8 nodes)

co-VMM: consistent performance + performance isolation

Related Work

22

� Exascale operating systems and runtimes (OS/Rs)
�  Hobbes (SNL, LBNL, LANL, ORNL, U. Pitt, various universities)

�  Argo (ANL, LLNL, PNNL, various universities)

�  FusedOS (Intel / IBM)

� mOS (Intel)

� McKernel (RIKEN AICS, University of Tokyo)

Our uniqueness: performance isolation, dynamic
resource composition, lightweight virtualization

Conclusion

23

�  Design and implementation of the Pisces co-kernel architecture

�  Pisces framework

� Kitten co-kernel

�  Palacios VMM for Kitten co-kernel

�  Demonstrated that the co-kernel architecture provides

� Optimized execution environments for in situ processing

�  Performance isolation

https://software.sandia.gov/trac/kitten

http://www.prognosticlab.org/pisces/

http://www.prognosticlab.org/palacios

Thank You

Jiannan Ouyang
�  Ph.D. Candidate @ University of Pittsburgh
�  ouyang@cs.pitt.edu
�  http://people.cs.pitt.edu/~ouyang/

�  The Prognostic Lab @ U. Pittsburgh
�  http://www.prognosticlab.org

