
CACHE LINE AWARE OPTIMIZATIONS
FOR CCNUMA SYSTEMS

Sabela Ramos (sramos@udc.es)
GAC, Universidade da Coruña (Spain)

Torsten Hoefler (htor@inf.ethz.ch) 

SPCL, ETH Zurich (Switzerland)24th ACM International Symposium on High-Performance Parallel and Distributed Computing

HPDC’15, Portland, 2015



WHAT IS THE PROBLEM?

•The increase in
• Number of cores per processor
• Complexity of memory hierarchies

•Programmability is maintained through cache coherence

•Which hides peformance characteristics.



OUR PROPOSAL: CLA DESIGN

• GOAL: help programmers to be Cache-Aware

•HOW? 

1. Detailed (but simple) performance model of the CC protocol

2. Methodology to translate algorithms into models

3. Select/Optimize/Design algorithms

CLa Design



OUR TESTBED

• Dual socket Intel Xeon Sandy Bridge E5-2660
• CC protocol: MESIF



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)
• L: Local 



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)
• L: Local 
• R: Remote – same socket



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)
• L: Local 
• R: Remote – same socket
• Q: Remote – different sockets



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)
• L: Local 
• R: Remote – same socket
• Q: Remote – different sockets
• I: From memory – same socket



1. PERFORMANCE MODEL

• Single-Line Transfers

• Multi-Line Transfers

Building Blocks (I)
• L: Local 
• R: Remote – same socket
• Q: Remote – different sockets
• I: From memory – same socket
• QI: From memory – different sockets



1. PERFORMANCE MODEL

• Contention
• Several threads accessing the same line simultaneously
• Sandy Bridge does not suffer from contention

• Congestion
• Several threads accessing different lines simultaneously
• The QPI link suffers from congestion Regression model

Building Blocks (II)



1. PERFORMANCE MODEL

• RFO of a shared line

• Cache-line stealing
• Caused by

• Polling

• False-sharing

• Solution?

Invalidation and Cache-line Stealing

Source of Variability

MIN MAX MODELS



2. CLA

• Copy N lines: cl_copy (cl_t* src, cl_t* dest, int N)

• Wait (poll): cl_wait (cl_t* line, clv_t val, op_t comp=eq)

• Write: cl_write (cl_t* line, clv_t val)

• Add: cl_add (cl_t* line, clv_t val) 

Cla Pseudo-code



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 1: within the same thread



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 1: within the same thread

Thread 0:
S1: cl_write(a,5)
S2: cl_write(b,6)



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 1: within the same thread

Thread 0:
S1: cl_write(a,5)
S2: cl_write(b,6)

S1



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 1: within the same thread

Thread 0:
S1: cl_write(a,5)
S2: cl_write(b,6)

S1

S2



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 1: within the same thread

Thread 0:
S1: cl_write(a,5)
S2: cl_write(b,6)

S1

S2



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 2: dependency between threads



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_write(a,5)

S01

Edge 2: dependency between threads



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_write(a,5)

S01

S11

Edge 2: dependency between threads

Thread 1:
S11: cl_wait(a,5)



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_write(a,5)

S01

S11

Edge 2: dependency between threads

Thread 1:
S11: cl_wait(a,5)



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 3: sequential restriction between threads



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_add(a,1) S01

Edge 3: sequential restriction between threads



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_add(a,1) S01 S11

Thread 1:
S11: cl_add(a,1)

Edge 3: sequential restriction between threads



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_add(a,1) S01 S11

Thread 1:
S11: cl_add(a,1)

Edge 3: sequential restriction between threads

Thread 2:
S21: cl_wait(a,2)

S21



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Thread 0:
S01: cl_add(a,1) S01 S11

Thread 1:
S11: cl_add(a,1)

Edge 3: sequential restriction between threads

Thread 2:
S21: cl_wait(a,2)

S21



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations

Thread 0:
S01: cl_write(a,1) S01



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations

Thread 0:
S01: cl_write(a,1)

Thread 1:
S11: cl_wait(a,1)

S01

S11



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations

Thread 0:
S01: cl_write(a,1)

Thread 1:
S11: cl_wait(a,1)
S12: cl_write(a,5)

S01

S11

S12



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations

Thread 0:
S01: cl_write(a,1)

Thread 1:
S11: cl_wait(a,1)
S12: cl_write(a,5)

Thread 2:
S21: cl_wait(a,5)

S01

S21

S11

S12



2. CLA

• Nodes: CLa operations

• Edges:

Cla Graph

Edge 4: line-stealing caused by non-related operations

Thread 0:
S01: cl_write(a,1)

Thread 1:
S11: cl_wait(a,1)
S12: cl_write(a,5)

Thread 2:
S21: cl_wait(a,5)

S01

S21

S11

S12



2. CLA

• Nodes: CLa operations

• Edges:

• Set of rules to obtain the Tmin

Cla Graph

Edge 1: within the same thread

Edge 2: dependency between threads

Edge 3: sequential restriction between threads

Edge 4: line-stealing caused by non-related operations



3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

Thread 1 Thread 2

Parent = -1
#children = 2

Parent = 0
#children = 0

Parent = 0
#children = 0



3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

S3

Parent = -1
#children = 2



Thread 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

S3

S4



Thread 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

S3

S4

S5



Parent = 0
#children = 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

S3

S4

S5

Thread 1

S1



Parent = 0
#children = 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

S3

S4

S5

Thread 1

S1

S2



Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

S3

S4

S5

Thread 1

S1

S2

S6

Parent = 0
#children = 0



Thread 1

Parent = 0
#children = 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

Thread 0

S3

S4

S5

S1

S2

S6

Thread 2

S1

S2

Parent = 0
#children = 0

S6



Thread 0

Thread 1

Parent = 0
#children = 0

Parent = -1
#children = 2

3. ALGORITHM DESIGN
Example: Broadcast

S3

S4

S5

S1

S2

S6

Thread 2

S1

S2

S6

Parent = 0
#children = 0



PERFORMANCE RESULTS

• Speedup of 14x vs. MPI
• Speedup of 1.8x vs. HMPI



CONCLUSIONS AND DISCUSSION

• Cache-coherency helps programmability

• BUT it complicates performance-centric programming

• The CLa methodology simplifies the analysis of algorithms under heavy
thread interaction conditions that affect performance:
• Contention and congestion
• Polling
• Cache-line stealing

• We compared our algorithms (communication and synchronization) with
MPI, OpenMP and HMPI obtaining high speedups.



CACHE LINE AWARE OPTIMIZATIONS
FOR CCNUMA SYSTEMS

Sabela Ramos (sramos@udc.es)
GAC, Universidade da Coruña (Spain)

Torsten Hoefler (htor@inf.ethz.ch) 

SPCL, ETH Zurich (Switzerland)24th ACM International Symposium on High-Performance Parallel and Distributed Computing

HPDC’15, Portland, 2015


	Cache Line Aware Optimizations for ccNUMA Systems
	What is the problem?
	Our Proposal: CLa Design
	Our testbED
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	1. Performance Model
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	2. CLa
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	3. Algorithm Design
	Performance Results
	CONCLUSIONs and discussion
	Cache Line Aware Optimizations for ccNUMA Systems

