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WHAT IS THE PROBLEM?

•The increase in
• Number of cores per processor
• Complexity of memory hierarchies

•Programmability is maintained through cache coherence

•Which hides peformance characteristics.



OUR PROPOSAL: CLA DESIGN

• GOAL: help programmers to be Cache-Aware

•HOW? 

1. Detailed (but simple) performance model of the CC protocol

2. Methodology to translate algorithms into models

3. Select/Optimize/Design algorithms

CLa Design



OUR TESTBED

• Dual socket Intel Xeon Sandy Bridge E5-2660
• CC protocol: MESIF
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1. PERFORMANCE MODEL

• Contention
• Several threads accessing the same line simultaneously
• Sandy Bridge does not suffer from contention

• Congestion
• Several threads accessing different lines simultaneously
• The QPI link suffers from congestion Regression model

Building Blocks (II)



1. PERFORMANCE MODEL

• RFO of a shared line

• Cache-line stealing
• Caused by

• Polling

• False-sharing

• Solution?

Invalidation and Cache-line Stealing

Source of Variability

MIN MAX MODELS



2. CLA

• Copy N lines: cl_copy (cl_t* src, cl_t* dest, int N)

• Wait (poll): cl_wait (cl_t* line, clv_t val, op_t comp=eq)

• Write: cl_write (cl_t* line, clv_t val)

• Add: cl_add (cl_t* line, clv_t val) 

Cla Pseudo-code
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2. CLA

• Nodes: CLa operations

• Edges:

• Set of rules to obtain the Tmin

Cla Graph

Edge 1: within the same thread

Edge 2: dependency between threads

Edge 3: sequential restriction between threads

Edge 4: line-stealing caused by non-related operations
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PERFORMANCE RESULTS

• Speedup of 14x vs. MPI
• Speedup of 1.8x vs. HMPI



CONCLUSIONS AND DISCUSSION

• Cache-coherency helps programmability

• BUT it complicates performance-centric programming

• The CLa methodology simplifies the analysis of algorithms under heavy
thread interaction conditions that affect performance:
• Contention and congestion
• Polling
• Cache-line stealing

• We compared our algorithms (communication and synchronization) with
MPI, OpenMP and HMPI obtaining high speedups.
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