

HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems

Gonzalo P. Rodrigo - <u>gonzalo@cs.umu.se</u> P-O Östberg - <u>p-o@cs.umu.se</u> Erik Elmroth - <u>elmroth@cs.umu.se</u> Katie Antypas - <u>kantypas@lbl.gov</u> Richard Gerber - <u>ragerber@lbl.gov</u> Lavanya Ramakrishnan - <u>lramakrishnan@lbl.gov</u>

Distributed Systems Group – Umeå University, Sweden Data Science & Technology – Lawrence Berkeley National Lab

Big picture: HPC evolution vs. batch schedulers

Infrastructure evolution: Exascale Application changes

Batch job schedulers were conceived to1) order tightly coupled large parallel jobs.2) achieve high utilization and low turn around time.

Are batch schedulers suitable for the current infrastructure and applications? Future?

Understanding how workloads have evolved in the past

Systems analyzed

Supercomputer

Hopper

Deployed January 2010

Cray XE6

Gemini Network

6,384 Nodes, 24 cores/node 154,216 cores

1.28 Pflops/s

Torque + Moab

Carver

Deployed 2010

IBM iDataPlex

Infiniband (fat-tree)

1,120 Nodes, 8/12/32 cores/ node, 9,984 cores

106.5 Tflops

Torque + Moab

Gonzalo P. Rodrigo – gonzalo@cs.umu.se

Workload evolution analysis: Methodology

Job variables

• Wall clock, number of cores (allocated), compute time, wait time, and wall clock time estimation.

Dataset

- 2010 2014
- 4.5M (Hopper) and 9.3M (Carver) Jobs
- Raw data 45 GB. Filtered data 9.3GB

Data source

Torque logs

Analysis

- Period slicing
- Period analysis
- Comparison

Wall clock time

Nersc

 $\sqrt{ME_A}$

UZ

Time Period

Core hours per job

 \sqrt{ME}_{A}

11111

UZ

 \sqrt{ME}_{A}

教教教

11111

UZ

Wall clock time accuracy

Nersc

Two machines with very different starting workloads, become more similar towards the end.

Most jobs are not very long and very parallel

Systems get "more loaded" in time

Users' estimations are really inaccurate.

	2010		2014	
(medians)	Hopper	Carver	Hopper	Carver
Wall Clock	< 1 min	20 min	12 min	6 min
Number of Cores	100 cores	5 cores	30 cores	1 core
Core Hours	4 c.h.	0.9 c.h.	11 c.h.	0.09 c.h.
Wait time	100 s	10 min	20 min	20 min
Wall clock accuracy	0.2	0.25	0.21	< 0.1

Gonzalo P. Rodrigo – gonzalo@cs.umu.se

Thank you very much!

(If you want to know more: please, come to the poster presentation)

Gonzalo P. Rodrigo – gonzalo@cs.umu.se