
ORNL is managed by UT-Battelle
for the US Department of Energy

Automated
Characterization
of Parallel
Application
Communication
Patterns
Philip C. Roth
Jeremy S. Meredith
Jeffrey S. Vetter
Oak Ridge National Laboratory
17 June 2015

2 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Background: Oxbow

•  Characterize application demands independent of
performance
–  System design
–  Representativeness of proxy apps

•  Characterization on several axes:
–  Communication (topology, volume)
–  Computation (instruction mix)
–  Memory access (reuse distance)

•  Online database for
results with web portal
including analytics
support

•  http://oxbow.ornl.gov

Instruction Mix, HPCG, 64 processes

Result of clustering apps using instruction mix

3 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Background: mpiP

•  Lightweight communication and I/O profiler for MPI
programs

•  Interposes instrumentation using PMPI interface
•  For Oxbow, we modified

mpiP to track:
–  Sender, receiver, volume for

point to point operations
–  Root, destination(s) and

volume for rooted collectives
–  Processes involved,

volume for rootless collectives

Communication matrix for HPCG,
64 processes

4 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

The Problem

• We want concise way to express application
communication demands

• E.g., “3D Nearest Neighbor plus broadcast and
reduce” instead of:

• But…expertise needed to identify patterns from
communication matrices

5 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Inspiration: Sky Subtraction

•  Inspired by sky subtraction: given an image, remove
the known to make it easier to identify the unknown

- =

Recognizing and removing the contribution of a 2D nearest neighbor pattern in a
synthetic communication matrix. This represents one step in a search-based
approach.

6 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Our Approach: Search Results Tree

•  Automated search using a
library of patterns

•  Search results tree
–  Each node represents a

communication matrix with
an associated residual that
captures how much volume
is represented by the matrix

–  Each edge represents a
recognized pattern in parent
node’s matrix; subtracting
that pattern results in child
node’s matrix

3D nearest neighbor 2D nearest neighbor

7 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Our Approach: Algorithm Overview

•  Associate original
communication matrix with
root node

•  For each pattern in pattern
library
–  Attempt to recognize the

pattern in node’s matrix
–  If recognized, add child node

and edge to search result tree

•  For each child node added,
recursively apply search
starting at child node

3D nearest neighbor 2D nearest neighbor

8 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}

Our Approach: Final Result

• When search finishes, path
between root and leaf node
with smallest residual
indicates patterns that best
explains original
communication matrix

9 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Pattern Recognition

•  Library of scale-independent pattern
generators and recognizers

• Given matrix M and recognizer for pattern P
–  Determines number of processes represented in

M
–  Checks entries in M that should be non-zero,

keeping track of smallest non-zero value seen (for
computing scale)
•  Detects 2D and 3D pattern dimensions based on non-

zero diagonals
•  Detects root process for broadcasts and reduce
•  Detects origin corner for 3D wavefront

–  If all entries that should be non-zero are non-zero,
reports that pattern is recognized and provides the
scale

M

MP

10 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Pattern Removal

• When pattern P is recognized in M at
scale S
– Generator for P generates matrix MP with

scale 1
–  Search forms M – SMP = M’, computes

residual of M’, and adds child node for M’ with
edge labeled with P and S

M

MP

M’

11 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Recognition Order

•  Recognition order matters
–  E.g., search recognizes and removes pattern for a broadcast, but doing so

precludes subsequent recognition of all-to-all

•  At each node in search results tree search attempts to recognize all
patterns so search considers all permutations of pattern orderings

•  As search speed optimization, always considers rootless collectives first
–  Otherwise, will recognize a long sequence of rooted collectives
–  Rooted collective sequence is equivalent from a topology/message volume

perspective

Rootless
collective
pattern

Broadcast
patterns

from root 0
(left) and

root 6
(right)

12 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Residual

• Current residual definition is sum of values in matrix,
representing amount of traffic to be explained
–  Lower is better
–  Simple to understand
–  Simple to compute
–  But, absolute values can be very large, even for modest-sized

programs

•  Alternatives possible
–  Keep definition and express as percentage of original message

volume
–  Statistics (e.g., average volume across all processes)

13 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Implementation

•  AChax, implemented in Python using NumPy and SciPy matrix support
•  Each pattern is a Python class with Recognize and Generate methods

–  Many-to-many
–  Broadcast
–  Reduce
–  2D Nearest Neighbor
–  3D Nearest Neighbor
–  3D Wavefront (sweep) from a corner
–  Random (generate only)

•  AChax search engine reports collection of patterns and their scale that
best explains original communication matrix, and optionally:
–  Matrix identified as having smallest residual
–  Log of search actions
–  Search results tree in format that can be visualized by GraphViz
–  Sequence of files containing intermediate matrices on path between tree root and

leaf with lowest residual

14 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Example: LAMMPS
•  Communication matrix collected using mpiP from 96 process run on

Keeneland Initial Delivery System, EAM benchmark problem
•  Basically a 3D Nearest Neighbor pattern, but imperfect pattern (red circle

in last figure)

Original matrix

After removing broadcast

After removing reduce

After removing 3D
nearest neighbor,
dimensions (4,4,6),
periodic

15 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

LAMMPS: Expressing Search Results

• Search results trees are useful but not particularly
concise

• We use an expression using parameterized pattern
names with scale coefficients, e.g., 4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.
At first glance, the residual matrix produced by remov-

ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.
LULESH uses a limited number of MPI communication

operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.
Figure 6 shows visualizations of the communication ma-

trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized

16 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Future Directions

•  Expand pattern library
–  Always more patterns to support
–  Irregular patterns

• Handle imperfect patterns (e.g., LAMMPS example)
with nearness score

•  Add better support for operation identification
–  We can recognize an all-to-all pattern, but cannot discern

which rootless MPI operation was used using just the matrix,
nor say whether it was truly an all-to-all or a naïve sequence of
broadcasts

–  Incorporating tracing and/or profiling data may help
•  Truly scale-independent expressions

–  Modeling integration (e.g., ASPEN)

17 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Future Directions (II)

• Search optimizations
–  Parallelize the search
–  Prune the search by recognizing search path prefixes that

are permutations
•  Recognition order matters, but having recognized A, B, C on one

path results in same matrix as other path that recognized C, A, B
as long as scales match – don’t need to continue search from both

• Phase-aware characterization
– mpiP can generate per-phase communication matrices

• Using image recognition algorithms for pattern
matching

18 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Acknowledgments

•  This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government
retains and the publisher, by accepting the article for
publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan). This
research is sponsored by the Office of Advanced Scientific
Computing Research in the U.S. Department of Energy.

19 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Summary

• We	 are	 researching	 an	 approach	 for	 automa2cally	
characterizing	 communica2on	 pa6erns	 of	 message	 passing	
applica2ons	

• We	 look	 for	 combina2on	 of	 simple	 pa6erns	 that	 best	 explains	
observed	 communica2on	 behavior	 using:	
–  Automated	 search	 through	 large	 search	 space	
–  Pa6ern	 generator	 library	
–  “Subtrac2on”	 of	 recognized	 pa6erns	 from	 observed	 communica2on	

•  rothpc@ornl.gov	
•  h6p://E.ornl.gov/~rothpc	

