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Motivation - Why MapReduce? 
• Data explosion 

 
• Needs distributed programming models and frameworks 

 
• MapReduce offers ease of programming: 
    Underlying framework (e.g. Hadoop), not the user, is      
     responsible for 

– Parallelization (intra and inter node) 
– Ensuring data locality 
– Assuring fault tolerance 

 

• MapReduce requirement: Only two operations Map 
(completely parallel), Reduce (partially parallel) 
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Motivation - Why Accelerators? 

3 

• Massive parallelism  good fit for Map 

• High memory bandwidth (~10x of CPUs) 

• High perf/watt (~5x of CPUs) 

• Commonplace, e.g. GPUs come built-in  

 



Hadoop 

• Most popular, open-source MapReduce 
implementation 

 

• HDFS 

 

• Hadoop Streaming 
– Requires just the executables for map, combine and 

reduce 

– User may write the program in any language adhering 
to Unix filter style (IO via STDIN/STDOUT) 
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HeteroDoop: Challenges and Approach 
• Accelerator programming models differ from those of CPUs. To 

exploit both, the user would have to write two program source 
codes 
– HeteroDoop offers program constructs so that a CPU-only program can 

now run on accelerators as well 
– An optimizing compiler translates codes to accelerator programs 
 

• Parallelism exploitation in Hadoop : One fileSplit per core – would 
exceed available GPU memory 
– Use record-level parallelism on the GPU, retain fileSplit-level 

parallelism for the CPU. 
 

• Lack of MapReduce semantics for Accelerators 
e.g. Intermediate sort 
– HeteroDoop contains a GPU-side runtime system 
 

• Load Balancing : Accelerators are faster than CPUs 
– We present a tail scheduling scheme to optimize the execution 
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HeteroDoop Program Constructs  

10 

int main() { 

  char word[30], *line; 

  size_t nbytes = 10000; 

  int read, linePtr, offset, one; 

  line = (char*) malloc(nbytes*sizeof(char)); 

 

 

  //read input file line by line 

  while ((read = getline(&line, &nbytes, stdin)) != -1) { 

    linePtr = 0; 

    offset = 0; 

    one = 1; 

    while( (linePtr = getWord(line, offset, word, 

      read, 30)) != -1) {//read words in the line 

      printf("%s\t%d\n", word, one); //emit <word, 1> 

      offset += linePtr; 

    } 

  } 

  free(line); 

  return 0; 

}  
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HeteroDoop Program Constructs  
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int main() { 

  char word[30], *line; 

  size_t nbytes = 10000; 

  int read, linePtr, offset, one; 

  line = (char*) malloc(nbytes*sizeof(char)); 

  #pragma mapreduce mapper key(word) value(one) \\ 

  keylength(30) vallength(1) 

  //read input file line by line 

  while ((read = getline(&line, &nbytes, stdin)) != -1) { 

    linePtr = 0; 

    offset = 0; 

    one = 1; 

    while( (linePtr = getWord(line, offset, word, 

      read, 30)) != -1) {//read words in the line 

      printf("%s\t%d\n", word, one); //emit <word, 1> 

      offset += linePtr; 

    } 

  } 

  free(line); 

  return 0; 

}  
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HeteroDoop Program Constructs 
int main() { 

  char word[30], prevWord[30]; 

  int count, val, read; 

 

 

  //read map emitted KV pairs, which are already sorted 

  while( (read = scanf("%s %d", word, &val)) == 2 ) { 

    if(strcmp(word, prevWord) == 0 ) { 

      count += val; //sum up occurrences of the same word 

    } else { 

      if(prevWord[0] != ’\0’) 

        printf("%s\t%d\n", prevWord, count); 

      strcpy(prevWord, word); 

      count = val; 

    } 

  } 

  if(prevWord[0] != ’\0’) 

    printf("%s\t%d\n", prevWord, count); 

   

  return 0; 

} 
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HeteroDoop Program Constructs 
int main() { 

  char word[30], prevWord[30]; 

  int count, val, read; 

  #pragma mapreduce combiner key(prevWord) value(count) 

  keyin(word) valuein(val) keylength(30) vallength(1) 

  firstprivate(prevWord, count) { 

  //read map emitted KV pairs, which are already sorted 

  while( (read = scanf("%s %d", word, &val)) == 2 ) { 

    if(strcmp(word, prevWord) == 0 ) { 

      count += val; //sum up occurrences of the same word 

    } else { 

      if(prevWord[0] != ’\0’) 

        printf("%s\t%d\n", prevWord, count); 

      strcpy(prevWord, word); 

      count = val; 

    } 

  } 

  if(prevWord[0] != ’\0’) 

    printf("%s\t%d\n", prevWord, count); 

  } 

  return 0; 

} 
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HeteroDoop Program Constructs : Why?  
• Low-level models (CUDA/OpenCL) : Programmer has to  

– Manage CPU-Accelerator data transfers 

– Identify the parallelism and launch “kernels” 

– Exploit intricate memory hierarchy (e.g. shared, textures memories) 

 

• High-level programming models (OpenMPC, OpenACC, OpenMP 
4.0) : Programmer has to 
– Identify parallelism 

– Lose out on architecture-specific optimizations 

 

• Why not use OpenACC etc. for MapReduce? 
– Inherent mismatch : MapReduce programmers write only a serial code, 

OpenACC programmers write a parallel code 

– OpenACC does not understand MapReduce semantics, restricting the 
scope of optimizations. 
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Parallelization Strategies for the GPU Code 
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• Each thread works on different records and places output key-value (KV) 
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– Each thread has a portion in the global KV store for each partition 

• Global KV store is conservatively over allocated 
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Parallelization Strategies for the GPU Code 
 

• Combine 

– Not explicitly parallel, but parallel across partitions 

– We exploit reduction-style parallelism inside a partition 

– Beneficial to run on the GPU since data is already present in 
the GPU memory 

 

• Reduce 

– Only on the CPU 

• Data is NOT already on the GPU 

• Number of reducers is typically low  barely any 
parallelism to use GPUs 

16 



HeteroDoop Execution Scheme 
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map.c combine.c reduce.c 

HeteroDoop Compiler 
gcc 

kernels.cu host.c 

Read Input,  
Count Records 

GPU KV Aggregate 

GPU Sort 

GPU Combine 

Write Output 

Host + GPU 
executable 

Driver for GPU0 

Task Fetcher 

Task Committer 

Runtime Library 

Hadoop Hadoop Streaming 

TaskTracker TaskTracker TaskTracker JobTracker 
Tasks 

Tasks 

Tasks to CPU 
cores 

Host  
executables 

nvcc 

GPU Map 

• Hadoop exploits all 
CPU cores of a 
node by running 
multiple slots on 
the TaskTracker of 
the node 

  

• HeteroDoop 
scheme runs one 
extra slot per GPU 
on the TaskTracker 

Compile link 

Execution Flow 



HeteroDoop Compiler 
• Auto-translator from annotated C to CUDA 

 

• Built with Cetus 

 

• Generates host (launcher) + device (kernel) 
code 

 

• Generated code contains calls to functions of 
the runtime system 
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Compiler Optimizations 
Map 
• No shared writeable data  All variables can be privatized  
• Optimizations : 

– Dynamic record fetching (record stealing) 
– Use of CUDA vector data types (e.g. char4)  

 
Combine 
• Optimizations : 

– Less parallelism  Use 1 thread per warp  no warp divergence 
– Use remaining warp threads to vectorize certain operations e.g. 

KV read/write, strcpy etc. 
– Private arrays are placed in the GPU shared memory  faster 

access 
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Host Code Flowchart 
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Runtime System Call 

Host Code  

• Runtime system 
supports kernel 
code by providing 
functions for:  

– read/write KV 
pairs 

– standard library 
functions for the 
GPU e.g. strcmp 

 

 

Get Input FileSplit from HDFS; Copy-in  

Allocate GPU data 

Execute map kernel 

numPart < 
TotalPartitions 

Aggregate 
partition[numPart] 

Copy-in other data 

numPart = 0 

Sort partition[numPart] 

Run Combine kernel on 
partition[numPart] 

Write output file 
on local 

disk/HDFS 

numPart ++ Free GPU data 

Copy-back output 
data 

True False 

Execute Record Counting Kernel 



Tail Scheduling 

• GPU First – naïve 
strategy where a 
GPU slot is 
preferred over a 
CPU slot 

• Tail Scheduling: 
Force tailing tasks 
on the GPU 

• Tail size = GPU slot 
speedup over the 
CPU slot (6x in this 
example) 
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Evaluation : Setup 
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Cluster1 Cluster2 

#nodes 48 (+1 master) 32 (+1 master) 

CPU Intel Xeon E5-2680, 20 cores Intel Xeon X5560, 12 cores 

GPU Tesla K40 (Kepler) New HW 3 x Tesla M2090 (Fermi) Old HW 

RAM 256GB 24GB 

Disk 500GB None (in-memory system) 

Network FDR Infiniband QDR Infiniband 

HDFS Block Size 256 MB 256 MB 

HDFS Replication 
Factor 

3 1 

Max. Map Slots 20 (+1 for GPU runs) 4 (+1 per GPU for GPU runs) 

Max. Reduce Slots 2 2 

• Speculative execution was disabled 
• Reduce phase was started after 20% map execution 
• Cluster2 : Used for evaluating multi-GPU scalability 



Evaluation : Overall Benefits – Cluster1 
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• Speedup with Tail Scheduling 1.6x (geo mean) 

• Speedup with GPU-First 1.48x (geo mean) 

• Higher speedups for compute-intensive applications 
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Evaluation : Overall Benefits – Cluster2 

• Larger speedups than Cluster1 since 
Cluster2 uses less CPU cores 

• Scalable performance with #GPUs 
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Individual Task Performance 
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• Single task 
speedup: max 
47x 

 

• Optimizations 
can have a 
high impact 

 

• Bottlenecks 
are application 
dependent 
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Conclusion 

HeteroDoop is a MapReduce programming system for 
accelerator clusters that features 
 
• Single input source for the CPUs and GPUs 
 
• Optimizing compiler to generate GPU program 

 
• Runtime system to handle MapReduce semantics on 

GPUs 
 

• Tail scheduling scheme that optimizes execution on an 
intra-node heterogeneous cluster 
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