HeteroDoop: A MapReduce Programming
System for Accelerator Clusters

Amit Sabne, Putt Sakdhnagool,
Rudolf Eigenmann

School of Electrical and Computer
Engineering, Purdue University

Download : http://bit.ly/1BwxGER

http://bit.ly/1BwxGER
http://bit.ly/1BwxGER
http://bit.ly/1BwxGER

Motivation - Why MapReduce?

Data explosion
Needs distributed programming models and frameworks

MapReduce offers ease of programming:
Underlying framework (e.g. Hadoop), not the user, is

responsible for

— Parallelization (intra and inter node)
— Ensuring data locality

— Assuring fault tolerance

MapReduce requirement: Only two operations Map
(completely parallel), Reduce (partially parallel)

Motivation - Why Accelerators?

* Massive parallelism = good fit for Map
* High memory bandwidth (~10x of CPUs)
* High perf/watt (~5x of CPUs)

* Commonplace, e.g. GPUs come built-in

Hadoop

 Most popular, open-source MapReduce
implementation

+ HDFS /C'I alo]

 Hadoop Streaming

— Requires just the executables for map, combine and
reduce

— User may write the program in any language adhering
to Unix filter style (IO via STDIN/STDOUT)

MapReduce — WordCount Example

fileSplit O

Bear Zebra

Cat Fly

Tiger Cat

fileSplit 1

Horse Zebra

Deer Tiger

< Map

MapTask O

Partition O Partition 1
Zebra,1

Bear, 1
Cat, 1
Fly, 1

Cat, 1

Tiger, 1

Whale Hare

fileSplit 2

Bear Horse

Zebra Deer

\WETJIEN !

Partition O Partition 1
Zebra, 1
Tiger, 1
Whale, 1

Horse, 1

Deer, 1

Horse, 1

Tiger Zebra

Partition O Partition 1

Bear, 1 Zebra, 1

Horse, 1 Tiger, 1

Deer, 1 Zebra, 1

MapReduce — WordCount Example

- Partition 0 Partition 1
fileSplit O
P Bear, 1 Tiger, 1
Bear Zebra
Cat, 1 Zebra, 1
Cat Fly >
Cat, 1
Tiger Cat
maptask 0 |
fileSplit 1 Partition 0 Partition 1
Horse Zebra Deer, 1 Tiger, 1
Deer Tiger 11> Horse,1 Whale, 1
Whale Hare - Horse,1 Zebra, 1
fileSplit 2 Sort
- Partition O Partition 1
Bear Horse
Bear, 1 Tiger, 1
Zebra Deer >
: Deer, 1 Zebra, 1
Tiger Zebra

MapReduce — WordCount Example

fileSplit O

Bear Zebra

Cat Fly

Combine

Tiger Cat

fileSplit 1

Horse Zebra

Deer Tiger

Partition O Partition 1
Bear, 1

Cat, 2
Fly, 1

Tiger, 1
Zebra, 1

Combine

Whale Hare

fileSplit 2

Bear Horse

Zebra Deer

\WETJIEN !

Partition O Partition 1

Deer, 1

Tiger, 1

Horse,2 Whale, 1

Zebra, 1

Combine

Tiger Zebra

i | I I | I I | I

Partition O Partition 1
Bear, 1

Deer, 1

Tiger, 1
Zebra, 2

Horse, 1

MapReduce — WordCount Example

fileSplit O

Bear Zebra

Cat Fly

Tiger Cat

fileSplit 1

Horse Zebra

Deer Tiger

MapTask O

Partition O Partition 1

Bear, 1
Cat, 2
Fly, 1

Tiger, 1

Zehra, 1 Merge

Whale Hare

fileSplit 2

Bear Horse

Zebra Deer

\WETJIEN !

Partition O Partition 1

Deer, 1 Tiger, 1

Bear, 1

Bear, 1

Cat, 2

Deer, 1

Deer, 1

outFile 0

Bear, 2

Cat, 2

Fly, 1

Horse, 2

Horse, 1

ReduceTask O

Horse,2 ‘Whale, 1
Zebra, 1 -/

Tiger Zebra

Partition O Partition 1.
Bear, 1 Tiger, 1

Deer, 1 Zebra, 2

Horse, 1

Tiger, 1

Tiger, 1

Tiger, 1

Whale, 1

Deer, 2

\

Fly, 1

Horse, 3

outFile 1

Tiger, 3

Zebra, 1

Zebra, 1

Zebra, 2

ReduceTask 1

hale, 1
Zebra, 4

8

HeteroDoop: Challenges and Approach

Accelerator programming models differ from those of CPUs. To
exploit both, the user would have to write two program source
codes

— HeteroDoop offers program constructs so that a CPU-only program can
now run on accelerators as well

— An optimizing compiler translates codes to accelerator programs

Parallelism exploitation in Hadoop : One fileSplit per core — would
exceed available GPU memory

— Use record-level parallelism on the GPU, retain fileSplit-level
parallelism for the CPU.

Lack of MapReduce semantics for Accelerators
e.g. Intermediate sort
— HeteroDoop contains a GPU-side runtime system

Load Balancing : Accelerators are faster than CPUs
— We present a tail scheduling scheme to optimize the execution

HeteroDoop Program Constructs

int main() {
char word[30], *line; WordCount
size t nbytes = 10000; Map Code
int read, linePtr, offset, one;
line = (char*) malloc (nbytes*sizeof (char));
CPU-only
//read input file line by line
while ((read = getline(&line, é&nbytes, stdin)) != -1) |{
TinebPtr = 0;
otfset = 0; Independent
one = 1; .
while((linePtr = getWord(line, offset, word, Iterations
read, 30)) != -1) {//read words in the line

printf ("$s\t%d\n", word, one); //emit <word, 1>
offset += linePtr;

}

free(line) ;
return 0O;

10

HeteroDoop Program Constructs

int main() {
char word[30],
size t nbytes 10000;
int read, linePtr, offset, one;
line (char*) malloc (nbytes*sizeof (char));
#pragma mapreduce mapper key (word) wvalue (one)
keylength (30) wvallength (1)
//read input file line by line

*1ine;

WordCount
Map Code

A\

CPU + Accelerator

{

while ((read = getline(&line, &nbytes, stdin)) != -1)
TinebPtr = 0;
offset = 0;
one = 1;
while((linePtr = getWord(line, offset, word,
read, 30)) != -1) {//read words in the line

printf ("%s\t%d\n", word, one);

offset += linePtr;

}

free(line) ;
return 0O;

//emit <word,

1>

11

HeteroDoop Program Constructs

int main() {
char word[30], prevWord[30]; CPU«nﬂy
int count, wval, read;

WordCount
Combine Code

//read map emitted KV pairs, which are already sorted
while((read = scanf ("%s %d", word, &val)) ==) A
1f (strcmp (word, prevWord) ==) A
count += val; //sum up occurrences of the same word
} else {
if (prevWord([0] != "\0")
rintf ("$s\t%d\n", prevWord, count);
StI]:pr (previWord, word) ; Data-dependence

count = val; Is present

}
if (prevWord([0] != "\0")
printf ("%s\t%d\n", prevWord, count);

return 0O;

12

HeteroDoop Program Constructs

int main () {
char word[30], prevWord[30];
int count, wval, read;
#pragma mapreduce combiner key (previWord) walue (count)
keyin (word) wvaluein(val) keylength (30) wvallength (1)
firstprivate (previWord, count) {
//read map emitted KV pairs, which are already sorted
while ((read = scanf ("%s %d", word, &val)) ==) |
1f (strcmp (word, prevWord) ==) |
count += val; //sum up occurrences of the same word

CPU + Accelerator WordCount
Combine Code

} else {
if (prevWord([0] != "\0")
printf ("%s\t%d\n", prevWord, count);
strcpy (prevWord, word);
count = val;

}
if (prevWord([0] != "\0")

printf ("%s\t%d\n", prevWord, count);
}

return 0O;

HeteroDoop Program Constructs : Why?

* Low-level models (CUDA/OpenCL) : Programmer has to

— Manage CPU-Accelerator data transfers
— ldentify the parallelism and launch “kernels”
— Exploit intricate memory hierarchy (e.g. shared, textures memories)

* High-level programming models (OpenMPC, OpenACC, OpenMP
4.0) : Programmer has to

— ldentify parallelism
— Lose out on architecture-specific optimizations

* Why not use OpenACC etc. for MapReduce?
— Inherent mismatch : MapReduce programmers write only a serial code,
OpenACC programmers write a parallel code

— OpenACC does not understand MapReduce semantics, restricting the
scope of optimizations.

Parallelization Strategies for the GPU Code

Map
* Explicitly parallel

e Each thread works on different records and places output key-value (KV)
pairs in its portion of a global KV store

— Each thread has a portion in the global KV store for each partition
* Global KV store is conservatively over allocated

Records Records
Bear Zebra Horse Zebra
Thread 1
Cat Fly rea Thread 2 Deer
Bear, 1 |Zebra, 1| Cat,1 | Fly, 1 Horse, 1|Zebra, 1| Deer, 1
Even the empty slots will be sorted!

Solution: Aggregate first!
Bear, 1 |Zebra, 1| Cat,1 | Fly,1 |Horse, 1|Zebra, 1| Deer, 1

\

pd
~

Smaller sort size .

Parallelization Strategies for the GPU Code

e Combine
— Not explicitly parallel, but parallel across partitions
— We exploit reduction-style parallelism inside a partition

— Beneficial to run on the GPU since data is already present in
the GPU memory

* Reduce
— Only on the CPU
e Data is NOT already on the GPU

* Number of reducers is typically low = barely any
parallelism to use GPUs

HeteroDoop Execution Scheme

map.C
S

combine.c
/\ /

reduce.c

MC

HeteroDoop Compiler

Tasks to CPU

/\ Host cores
4 e executables
kernels.cu host.c <
~. | Hadoop Hadoop Streaming .
Host + GPU nvcce C Tasks
executable TaskTracker JobTracker
Read Input, Tasks
Count Records Runtime System
GPU¢Map Runtime Library
GPU KV Aggregate C ¥
GPU¢Sort Driver for GPUO
¥ Task Fetcher
GPU Combine
v »| Task Committer

Write Output =

—

—

Hadoop exploits all
CPU cores of a
node by running
multiple slots on
the TaskTracker of
the node

HeteroDoop
scheme runs one
extra slot per GPU
on the TaskTracker

Compile link

Execution Flow

HeteroDoop Compiler

Auto-translator from annotated C to CUDA
Built with Cetus

Generates host (launcher) + device (kernel)
code

Generated code contains calls to functions of
the runtime system

Compiler Optimizations

Map
* No shared writeable data = All variables can be privatized
* Optimizations :

— Dynamic record fetching (record stealing)

— Use of CUDA vector data types (e.g. char4)

Combine
* Optimizations :
— Less parallelism = Use 1 thread per warp = no warp divergence

— Use remaining warp threads to vectorize certain operations e.g.
KV read/write, strcpy etc.

— Private arrays are placed in the GPU shared memory - faster
access

Host Code Flowchart

B Runtime System Call
Host Code

* Runtime system
supports kernel
code by providing
functions for:

— read/write KV
pairs

— standard library
functions for the
GPU e.g. strcmp

Get Input FileSplit from HDFS; Copy-in

Execute Record Counting Kernel

Allocate GPU data

Copy-in other data
¥

Execute map kernel

v
numPart=0

numpPart <
TotalPartitions

True False

Copy-back output

Aggregate
data

partition[numPart]

Sort partition[numPart] Write output file

on local

Run Combine kernel on disk/HDFS
partition[numPart]

v
UmPart 4+ Free GPU data

20

Time

Tail Scheduling

GPU First Tail Scheduled
GPU CPUO CPU1 GPU CPUO CPU1
1 1
4 4
> 5
6 2 3 6 2 3
7 7
8 8
9 9
12 12
13 13

14

10

11

18

19

10 11

Tail begin

}Time Saved

GPU First — naive
strategy where a
GPU slot is
preferred over a
CPU slot

Tail Scheduling:
Force tailing tasks
on the GPU

Tail size = GPU slot
speedup over the
CPU slot (6x in this
example)

21

Evaluation : Setup
. [Custed Cluse2

#nodes 48 (+1 master) 32 (+1 master)

CPU Intel Xeon E5-2680, 20 cores Intel Xeon X5560, 12 cores
GPU Tesla K40 (Kepler) New HW 3 x Tesla M2090 (Fermi) Old HW
RAM 256GB 24GB

Disk 500GB None (in-memory system)
Network FDR Infiniband QDR Infiniband

HDFS Block Size 256 MB 256 MB

HDFS Replication 3 1

Factor

Max. Map Slots 20 (+1 for GPU runs) 4 (+1 per GPU for GPU runs)
Max. Reduce Slots 2 2

* Speculative execution was disabled
 Reduce phase was started after 20% map execution
e Cluster2 : Used for evaluating multi-GPU scalability

22

Evaluation : Overall Benefits — Clusterl

Compute Intensive

w

B CPU + GPU + GPU-First

N
U

E CPU + GPU + Tail Sched

N
|

=

o
&

Speedup over CPU-only Hadoop
[ERY
w

!
o

o
"

n o _l

GR HS WC HR LR KM CL BS

o

Speedup with Tail Scheduling 1.6x (geo mean)
Speedup with GPU-First 1.48x (geo mean)
Higher speedups for compute-intensive applications

23

Evaluation : Overall Benefits — Cluster?2

Speedup over CPU-only Hadoop

[y
0]

[y
(e)]

[EEY
N

N
o

(RS SN
o N

o N B~ O
|

Compute Intensive

Il
A

B CPU + 1GPU + GPU-First
B CPU + 1GPU + Tail Sched
B CPU + 2GPU + GPU-First
@ CPU + 2GPU + Tail Sched
B CPU + 3GPU + GPU-First
CPU + 3GPU + Tail Sched

(I

wWC

e Larger speedups than Clusterl since

HR

LR CL

Cluster2 uses less CPU cores

* Scalable performance with #GPUs

BS

24

Individual Task Performance

64 4222 4281 46.86°

MW Speedup - Optimized
32 1 O Speedup - Baseline “ B o Slngle taSk
16 14.03 14.13 - - B

— speedup: max
5.86_ 46.86| 47X

4 - 19.77| |19.83
1333 |11.09
2.05 5.46

Speedup of a GPU Task over a
CPU Task
(0]
|
|
|
|

— . . .
GR HS WC HR IR KM CL BS ° Optlmlzatlons
o can have a
o 90% ——’
S
/f 54

E oo -"-:'.'.-:'._IEH Output write h |g h | m pa Ct

c

S 70%

res)

-} .

S 60%

x

& 50%

S 0% -

©

£ 30% -

S 20% -
10% -
0% -

| mCombine

Eé%%—I!:JSort
- [maggregation © Bottlenecks

NN

5] B Map are application
1M Input Read
= dependent

AR TSN

I -
X

HS LR CL BS

2
S

25

Conclusion

HeteroDoop is a MapReduce programming system for
accelerator clusters that features

* Single input source for the CPUs and GPUs
* Optimizing compiler to generate GPU program

* Runtime system to handle MapReduce semantics on
GPUs

* Tail scheduling scheme that optimizes execution on an
intra-node heterogeneous cluster

Download : http://bit.ly/1BwxGER

PURDUE

U N 1Y RS Y

http://bit.ly/1BwxGER
http://bit.ly/1BwxGER
http://bit.ly/1BwxGER

