
HeteroDoop: A MapReduce Programming
System for Accelerator Clusters

Amit Sabne, Putt Sakdhnagool,
Rudolf Eigenmann

School of Electrical and Computer

Engineering, Purdue University

1

Download : http://bit.ly/1BwxGER

http://bit.ly/1BwxGER
http://bit.ly/1BwxGER
http://bit.ly/1BwxGER

Motivation - Why MapReduce?
• Data explosion

• Needs distributed programming models and frameworks

• MapReduce offers ease of programming:
 Underlying framework (e.g. Hadoop), not the user, is
 responsible for

– Parallelization (intra and inter node)
– Ensuring data locality
– Assuring fault tolerance

• MapReduce requirement: Only two operations Map
(completely parallel), Reduce (partially parallel)

2

Motivation - Why Accelerators?

3

• Massive parallelism  good fit for Map

• High memory bandwidth (~10x of CPUs)

• High perf/watt (~5x of CPUs)

• Commonplace, e.g. GPUs come built-in

Hadoop

• Most popular, open-source MapReduce
implementation

• HDFS

• Hadoop Streaming
– Requires just the executables for map, combine and

reduce

– User may write the program in any language adhering
to Unix filter style (IO via STDIN/STDOUT)

 4

MapTask 0

MapTask 1

MapTask 2 5

Bear Zebra

Cat Fly

Tiger Cat

Bear Horse

Zebra Deer

Tiger Zebra

Horse Zebra

Deer Tiger

Whale Hare

Map

Bear, 1

Partition 0 Partition 1

Zebra,1

Cat, 1 Tiger, 1

Fly, 1

Cat, 1

Horse, 1

Partition 0 Partition 1

Zebra, 1

Deer, 1 Tiger, 1

Horse, 1 Whale, 1

Bear, 1

Partition 0 Partition 1

Zebra, 1

Horse, 1 Tiger, 1

Deer, 1 Zebra, 1

Map

Map

fileSplit 0

fileSplit 1

fileSplit 2

MapReduce – WordCount Example

MapTask 0

MapTask 1

MapTask 2 6

Bear Zebra

Cat Fly

Tiger Cat

Bear Horse

Zebra Deer

Tiger Zebra

Horse Zebra

Deer Tiger

Whale Hare

Partition 1

Bear, 1

Partition 0

Tiger, 1

Cat, 1 Zebra, 1

Cat, 1

Fly, 1

Deer, 1

Partition 0 Partition 1

Tiger, 1

Horse, 1 Whale, 1

Horse, 1 Zebra, 1

Bear, 1

Partition 0 Partition 1

Tiger, 1

Deer, 1 Zebra, 1

Horse, 1 Zebra, 1

Sort

Sort

Sort
fileSplit 0

fileSplit 1

fileSplit 2

MapReduce – WordCount Example

MapTask 0

MapTask 1

MapTask 2

Bear Zebra

Cat Fly

Tiger Cat

Bear Horse

Zebra Deer

Tiger Zebra

Horse Zebra

Deer Tiger

Whale Hare

Bear, 1

Partition 0 Partition 1

Tiger, 1

Cat, 2 Zebra, 1

Fly, 1

Deer, 1

Partition 0 Partition 1

Tiger, 1

Horse, 2 Whale, 1

Zebra, 1

Bear, 1

Partition 0 Partition 1

Tiger, 1

Deer, 1 Zebra, 2

Horse, 1

fileSplit 0

fileSplit 1

fileSplit 2

Combine

Combine

Combine

MapReduce – WordCount Example

ReduceTask 1

ReduceTask 0

8

Bear Zebra

Cat Fly

Tiger Cat

Bear Horse

Zebra Deer

Tiger Zebra

Horse Zebra

Deer Tiger

Whale Hare

fileSplit 0

fileSplit 1

fileSplit 2

Bear, 1

Cat, 2

Fly, 1

Deer, 1

Bear, 1

Deer, 1

Horse, 2

Horse, 1

Tiger, 1

Tiger, 1

Tiger, 1

Whale, 1

Zebra, 1

Zebra, 1

Zebra, 2

R
e
d
u
c
e

R
e
d
u
c
e

Merge

Merge

Bear, 2

Cat, 2

Deer, 2

Fly, 1

Horse, 3

outFile 0

Tiger, 3

Whale, 1

Zebra, 4

outFile 1

MapReduce – WordCount Example

MapTask 0

MapTask 1

MapTask 2

Bear, 1

Partition 0 Partition 1

Tiger, 1

Cat, 2 Zebra, 1

Fly, 1

Deer, 1

Partition 0 Partition 1

Tiger, 1

Horse, 2 Whale, 1

Zebra, 1

Bear, 1

Partition 0 Partition 1

Tiger, 1

Deer, 1 Zebra, 2

Horse, 1

HeteroDoop: Challenges and Approach
• Accelerator programming models differ from those of CPUs. To

exploit both, the user would have to write two program source
codes
– HeteroDoop offers program constructs so that a CPU-only program can

now run on accelerators as well
– An optimizing compiler translates codes to accelerator programs

• Parallelism exploitation in Hadoop : One fileSplit per core – would
exceed available GPU memory
– Use record-level parallelism on the GPU, retain fileSplit-level

parallelism for the CPU.

• Lack of MapReduce semantics for Accelerators
e.g. Intermediate sort
– HeteroDoop contains a GPU-side runtime system

• Load Balancing : Accelerators are faster than CPUs
– We present a tail scheduling scheme to optimize the execution

9

HeteroDoop Program Constructs

10

int main() {

 char word[30], *line;

 size_t nbytes = 10000;

 int read, linePtr, offset, one;

 line = (char*) malloc(nbytes*sizeof(char));

 //read input file line by line

 while ((read = getline(&line, &nbytes, stdin)) != -1) {

 linePtr = 0;

 offset = 0;

 one = 1;

 while((linePtr = getWord(line, offset, word,

 read, 30)) != -1) {//read words in the line

 printf("%s\t%d\n", word, one); //emit <word, 1>

 offset += linePtr;

 }

 }

 free(line);

 return 0;

}

Independent
Iterations

WordCount
Map Code

CPU-only

HeteroDoop Program Constructs

11

int main() {

 char word[30], *line;

 size_t nbytes = 10000;

 int read, linePtr, offset, one;

 line = (char*) malloc(nbytes*sizeof(char));

 #pragma mapreduce mapper key(word) value(one) \\

 keylength(30) vallength(1)

 //read input file line by line

 while ((read = getline(&line, &nbytes, stdin)) != -1) {

 linePtr = 0;

 offset = 0;

 one = 1;

 while((linePtr = getWord(line, offset, word,

 read, 30)) != -1) {//read words in the line

 printf("%s\t%d\n", word, one); //emit <word, 1>

 offset += linePtr;

 }

 }

 free(line);

 return 0;

}

WordCount
Map Code

CPU + Accelerator

12

HeteroDoop Program Constructs
int main() {

 char word[30], prevWord[30];

 int count, val, read;

 //read map emitted KV pairs, which are already sorted

 while((read = scanf("%s %d", word, &val)) == 2) {

 if(strcmp(word, prevWord) == 0) {

 count += val; //sum up occurrences of the same word

 } else {

 if(prevWord[0] != ’\0’)

 printf("%s\t%d\n", prevWord, count);

 strcpy(prevWord, word);

 count = val;

 }

 }

 if(prevWord[0] != ’\0’)

 printf("%s\t%d\n", prevWord, count);

 return 0;

}

WordCount
Combine Code

Data-dependence
is present

CPU-only

13

HeteroDoop Program Constructs
int main() {

 char word[30], prevWord[30];

 int count, val, read;

 #pragma mapreduce combiner key(prevWord) value(count)

 keyin(word) valuein(val) keylength(30) vallength(1)

 firstprivate(prevWord, count) {

 //read map emitted KV pairs, which are already sorted

 while((read = scanf("%s %d", word, &val)) == 2) {

 if(strcmp(word, prevWord) == 0) {

 count += val; //sum up occurrences of the same word

 } else {

 if(prevWord[0] != ’\0’)

 printf("%s\t%d\n", prevWord, count);

 strcpy(prevWord, word);

 count = val;

 }

 }

 if(prevWord[0] != ’\0’)

 printf("%s\t%d\n", prevWord, count);

 }

 return 0;

}

WordCount
Combine Code

CPU + Accelerator

HeteroDoop Program Constructs : Why?
• Low-level models (CUDA/OpenCL) : Programmer has to

– Manage CPU-Accelerator data transfers

– Identify the parallelism and launch “kernels”

– Exploit intricate memory hierarchy (e.g. shared, textures memories)

• High-level programming models (OpenMPC, OpenACC, OpenMP
4.0) : Programmer has to
– Identify parallelism

– Lose out on architecture-specific optimizations

• Why not use OpenACC etc. for MapReduce?
– Inherent mismatch : MapReduce programmers write only a serial code,

OpenACC programmers write a parallel code

– OpenACC does not understand MapReduce semantics, restricting the
scope of optimizations.

14

Parallelization Strategies for the GPU Code

15

Bear, 1 Zebra, 1 Cat, 1 Fly, 1 Horse, 1 Zebra, 1 Deer, 1

Bear Zebra

Cat Fly

Horse Zebra

Deer

Map

• Explicitly parallel

• Each thread works on different records and places output key-value (KV)
pairs in its portion of a global KV store

– Each thread has a portion in the global KV store for each partition

• Global KV store is conservatively over allocated

Thread 1 Thread 2

Even the empty slots will be sorted!

Solution: Aggregate first!

Bear, 1 Zebra, 1 Cat, 1 Fly, 1 Horse, 1 Zebra, 1 Deer, 1

Smaller sort size

Records Records

Parallelization Strategies for the GPU Code

• Combine

– Not explicitly parallel, but parallel across partitions

– We exploit reduction-style parallelism inside a partition

– Beneficial to run on the GPU since data is already present in
the GPU memory

• Reduce

– Only on the CPU

• Data is NOT already on the GPU

• Number of reducers is typically low  barely any
parallelism to use GPUs

16

HeteroDoop Execution Scheme

17

Runtime System

map.c combine.c reduce.c

HeteroDoop Compiler
gcc

kernels.cu host.c

Read Input,
Count Records

GPU KV Aggregate

GPU Sort

GPU Combine

Write Output

Host + GPU
executable

Driver for GPU0

Task Fetcher

Task Committer

Runtime Library

Hadoop Hadoop Streaming

TaskTracker TaskTracker TaskTracker JobTracker
Tasks

Tasks

Tasks to CPU
cores

Host
executables

nvcc

GPU Map

• Hadoop exploits all
CPU cores of a
node by running
multiple slots on
the TaskTracker of
the node

• HeteroDoop
scheme runs one
extra slot per GPU
on the TaskTracker

Compile link

Execution Flow

HeteroDoop Compiler
• Auto-translator from annotated C to CUDA

• Built with Cetus

• Generates host (launcher) + device (kernel)
code

• Generated code contains calls to functions of
the runtime system

18

Compiler Optimizations
Map
• No shared writeable data  All variables can be privatized
• Optimizations :

– Dynamic record fetching (record stealing)
– Use of CUDA vector data types (e.g. char4)

Combine
• Optimizations :

– Less parallelism  Use 1 thread per warp  no warp divergence
– Use remaining warp threads to vectorize certain operations e.g.

KV read/write, strcpy etc.
– Private arrays are placed in the GPU shared memory  faster

access

19

Host Code Flowchart

20

Runtime System Call

Host Code

• Runtime system
supports kernel
code by providing
functions for:

– read/write KV
pairs

– standard library
functions for the
GPU e.g. strcmp

Get Input FileSplit from HDFS; Copy-in

Allocate GPU data

Execute map kernel

numPart <
TotalPartitions

Aggregate
partition[numPart]

Copy-in other data

numPart = 0

Sort partition[numPart]

Run Combine kernel on
partition[numPart]

Write output file
on local

disk/HDFS

numPart ++ Free GPU data

Copy-back output
data

True False

Execute Record Counting Kernel

Tail Scheduling

• GPU First – naïve
strategy where a
GPU slot is
preferred over a
CPU slot

• Tail Scheduling:
Force tailing tasks
on the GPU

• Tail size = GPU slot
speedup over the
CPU slot (6x in this
example)

21

GPU First

2

GPU CPU 0

3

CPU 1

10

1

4

5

6

7

8

11

18 19

Ti
m

e

GPU
Idle

9

12

13

14

15

16

17

Tail Scheduled

GPU CPU 0 CPU 1

Time Saved

1

4

5

6

7

8

9

12

13

14

15

16

17

2 3

10 11

18

19

Tail begin

Evaluation : Setup

22

Cluster1 Cluster2

#nodes 48 (+1 master) 32 (+1 master)

CPU Intel Xeon E5-2680, 20 cores Intel Xeon X5560, 12 cores

GPU Tesla K40 (Kepler) New HW 3 x Tesla M2090 (Fermi) Old HW

RAM 256GB 24GB

Disk 500GB None (in-memory system)

Network FDR Infiniband QDR Infiniband

HDFS Block Size 256 MB 256 MB

HDFS Replication
Factor

3 1

Max. Map Slots 20 (+1 for GPU runs) 4 (+1 per GPU for GPU runs)

Max. Reduce Slots 2 2

• Speculative execution was disabled
• Reduce phase was started after 20% map execution
• Cluster2 : Used for evaluating multi-GPU scalability

Evaluation : Overall Benefits – Cluster1

23

• Speedup with Tail Scheduling 1.6x (geo mean)

• Speedup with GPU-First 1.48x (geo mean)

• Higher speedups for compute-intensive applications

0

0.5

1

1.5

2

2.5

3

GR HS WC HR LR KM CL BS

Sp
e

e
d

u
p

 o
ve

r
C

P
U

-o
n

ly
 H

ad
o

o
p

CPU + GPU + GPU-First

CPU + GPU + Tail Sched

Compute Intensive

Evaluation : Overall Benefits – Cluster2

• Larger speedups than Cluster1 since
Cluster2 uses less CPU cores

• Scalable performance with #GPUs
24

0

2

4

6

8

10

12

14

16

18

20

GR HS WC HR LR CL BS

Sp
e

e
d

u
p

 o
ve

r
C

P
U

-o
n

ly
 H

ad
o

o
p

CPU + 1GPU + GPU-First

CPU + 1GPU + Tail Sched

CPU + 2GPU + GPU-First

CPU + 2GPU + Tail Sched

CPU + 3GPU + GPU-First

CPU + 3GPU + Tail Sched

Compute Intensive

Individual Task Performance

25

• Single task
speedup: max
47x

• Optimizations
can have a
high impact

• Bottlenecks
are application
dependent

1.11 1.88

5.46

13.33 11.09
19.77 19.83

46.86

1.36

2.05

5.86

14.03 14.13

42.22 42.81 46.86

1

2

4

8

16

32

64

GR HS WC HR LR KM CL BS

Sp
ee

d
u

p
 o

f
a

G
P

U
 T

as
k

o
ve

r
a

C
P

U
 T

as
k

Speedup - Optimized

Speedup - Baseline

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GR HS WC HR LR KM CL BS

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Output write

Combine

Sort

Aggregation

Map

Input Read

Conclusion

HeteroDoop is a MapReduce programming system for
accelerator clusters that features

• Single input source for the CPUs and GPUs

• Optimizing compiler to generate GPU program

• Runtime system to handle MapReduce semantics on

GPUs

• Tail scheduling scheme that optimizes execution on an
intra-node heterogeneous cluster

26

Download : http://bit.ly/1BwxGER

http://bit.ly/1BwxGER
http://bit.ly/1BwxGER
http://bit.ly/1BwxGER

