Understanding Graph Computation
Behavior to Enable Robust Benchmarking

Fan Yang™* and Andrew A. Chien*t
*University of Chicago, TArgonne National Laboratory
{fanyang, achien}@cs.uchicago.edu

HPDC, June 18, 2015
Portland

Background

* Graph processing is challenging because of
— Extreme scale
— Complex computation
 Many graph-processing systems are designed
to meet these challenges
— Pregel, Giraph,

ST
GraphLab, GPS, Saassens ‘==":
ORI
GraphX, GraphChi &= ':b:':
.’;“ B
...... L] (L LN
P C H E

— o7 Graphlab

Motivation

* Graph computation spans a large diversity of algorithms
and graphs.

* Graph system performance studies reflect this diversity.

M. Han [1]: Giraph, PageRank, LiveJournal,Orkut,Arabi)\

Their results provide no clear perspective on which system is
preferable in a given context (graph, algorithms, etc).
- How to do a more complete, efficient performance study?

niraph, GraphLa

Y. Guo [3]: Hadoop,
YARN, Statistic
Stratosphere, algorithm, BFS,
Giraph, Graphlab, CC, CD, GE
Neo4;

Amazon, WikiTalk,
KGS, Citation,
Dotaleague, Synth,
Friendster

Our Contribution

We provide a systematic understanding of the
performance impact of various algorithms and
graphs, and thereby enable robust, systematic,
efficient benchmarking.

Algorithms
Domains

Graph size

Structure

Graph
computation
performance

Benchmarking

Characterize the Variation

* Reflect the complexity of graph computation:
— We select 11 algorithms from multiple domains.
— We generate 20 graphs with different sizes and
degree distributions.
* We run each <graph, algorithm> on Graphlab,
and capture its fundamental behavior:
— Active fraction: fraction of active vertices

— {UPDT, WORK, EREAD, MSG}: #vertex updates, CPU
time, #edge reads, #messages

* Behavior variation across graph algorithms

* Behavior variation across graphs

Aptive Fr?ction qf Conngcted C'ompongnts . . Acltive Frgction gf K-Melans .

— Degree
— Distributions | |

SRR Different
Graph Sizes

" Graph computation behavior exhibits a wide variation across
algorithms and graphs, forming a broad space.
- We need a more efficient way to explore the behavior

space of graph computation.

L -0 MSG UPDT---i----teieitn @bt MSG UPDT - G- G- DS D5 MSG (UPDRE— - e

Understand the Behavior Space &

What is behavior space?

» .
ble Se .
. e
ri .
R
* Howtoexp.,. °*° ‘.
— Run an ens Low Spread High Spread _ 2IF'S tO extract as
broad behg:iarsgacsmaars A Banshassring]
* Howtoeva - - ity?
— Spread: ho| * . j> . . res the space.
— Coverage: |, ° . e ° * |xplores the space
Low Coverage High Coverage

[For precise definition of spread and coverage see the paper.]

Best Ensemble selected Ideal ensemble that samples
diversely from all runs. space uniformly. (Upper bound)

Best Ensemble selected from runs on
a single graph.

Single Algorithm Ensembles

— v

I I I I I 1

10 12 14 16 18 20
Number of runs

Best ensemble selected from runs
with a single algorithm.

Which ensemble is better?

|Ideal ensemble that samples
o
COve rage space uniformly. (Upper bound)

(1) Benchmarking with single algorithm/graph only characterizes
limited graph computation behavior, and is inefficient.

(2) By exploiting both algorithm and graph diversity, we can
construct an efficient and representative benchmark suite, but
all the members must be carefully chosen.

Algorithm Ensembles

2.1 | T T T T T T T T 1

2 4 6 8 10 12 14 16 18 20
Number of runs

Members of ensembles achieving best spread and
coverage

Ensemble Size Ensemble Members (Runs)

<ALS, 10°, 3.0>, <SGD, 108, 2.0>, <TC, 10°, 2.0>,

S <SSSP, 107, 3.0>, <ALS, 10°, 2.75>
Best 10 ALS, SGD, TC, SSSP, ALS, TC, SGD, ALS, KM, SVD
Spread 15 SSSP, ALS, KM, SGD, ALS, TC, SGD, ALS, TC, SSSP, ALS,
SGD, TC, SVD, ALS
20 SSSP, ALS, TC, SGD, ALS, TC, SGD, ALS, KM, SSSP, ALS,
SGD, KM, SVD, ALS, TC, SGD, ALS, SGD, TC
5 <TC, 106, 2.5>, <KM, 106, 2.25>, <AD, 107, 3.0>,
<ALS, 103, 2.0>, <KC, 10°, 2.5>
Best 10 AD, SVD, KM, ALS, TC, KC, KM, ALS, KM, NMF
Coverage 15 KM, NMF, ALS, AD, SVD, KC, KM, ALS, KM, KM, SVD,

PR, ALS, TC, NMF

20 AD, SVD, KM, ALS, TC, KC, KM, ALS, KM, SGD, NMF,
KM, ALS, NMF, PR, TC, NMF, SSSP, ALS, AD

 Some algorithms are more useful in behavior

space exploration than others.
— Alternating Least Square, K-means, Triangle counting

* We can further reduce benchmarking
complexity without much loss of quality.

— Employ less algorithms, run less iterations, etc.

[More details can be found in the paper. Full description can be found in
my master’s thesis]

Summary & Future Work

We find graph computation exhibits large variation of
behavior across both algorithms and graphs.

Our study shows that diverse and careful selection of
algorithms and graphs is important for robust and
efficient benchmarking.

We present a systematic approach to constructing
robust, efficient benchmark set.

Future work:
— Study temporal and spatial dynamic variation of graph computation behavior.
— Use our framework to analyze performance studies.

— Understand if we can model a graph computation and predict its performance.
— Use our framework to find optimal configurations for graph computations

Thanks!

Workload: Graph Algorithms

e Select from multiple domains to capture the
variety and breadth of graph algorithms.

— Graph Analytics: Connected Components (CC), K-Cores
(KC), Triangle Counting (TC), SSSP, PageRank (PR), Approximate

Diameter (AD).
— Clustering: K-Means (KM).

— Collaborative Filtering: Alternating Least Squares (ALS),
Non-negative Matrix Factorization (NMF), Stochastic Gradient
Descent (SGD), Singular Value Decomposition (SVD).

Workload: Graphs

e Capture the major properties that significantly
impact graph computation.

— Graph size is defined as the number of edges
(nedges). (10°~ 10°).

— Degree distribution of a graph follows a power law,
defined as the following formula:

Pk)~ k@
Where P(k) is the fraction of vertices in the graph with
degree k, and a is a constant. (2.0 ~ 3.0)

* A synthetic graph is represented as <nedges, a>.

Performance Metrics

e Capture the fundamental behavior of graph
computation
— Active Fraction: the ratio of active vertices to all
vertices in a single iteration.

— UPDT:
iteratia
\Wiel:{€ Metricvaluesvary by orders of magnitude

Graph size vary by orders of magnitude

vertex
SmE TP} Relative difference is more important than

absolute values

< Note: {UPDT, WORK, EREAD, MSG} are normalized to [0, 1]. >

Experimental Setup

* We execute 11 algorithms over 20 graphs (215
runs in total)

 Platform: Midway (up to 48 nodes, 16 cores each)
* Graph-processing system: GraphlLab v2.2

How to understand the Behavior Space?

* Definitions:
— The behavior of a graph computation (a graph-
algorithm pair):

Behavior(GC,) =< UPDT ,WORK,EREAD,MSG >

— An ensemble of graph computations to model any
sets of experiments:

Ensemble, ={GC,,GC,,...,GC,}

How well an ensemble sample the

Behavior Space?

* Ensemble metrics:

— Spread is how efficiently an ensemble exp

the behavior space.

N N
E E d(Behavior(GC,;), Behavior(GC)))

i=1 j=1

Spread(Ensemble,) =
P (k) NN -1)

Low Spread

High Spread

— Coverage is how completely an ensemble explores

the behavior space.

Coverage(Ensemble,) = Ns

N

E kn]m]lv {d(Sample., Behavior(GC,))}
L f-i...

Low Coverage

High Coverage

Q1: How efficiently can an ensemble with a
single algorithm explore the behavior space?

o
Spread We also compute an upper bound
assuming ensemble members
1.4 uniformly and maximally
N distributed in the behavior space

= = Upper bound
—CC

For each of the 11 algorithms, we
search all runs over 20 graphs to

find the best achievable spread.

2 4 6 8 10 12 14 16 18 20
Number of runs

Q1: How completely can an ensemble with a
single algorithm explore the behavior space?

* Coverage
5.1 - -~ = = Upper bound
_ ~ - —CC
4.6 — —KC
4.1 D - -
o search all runs over 20 graphs to
356 find the best achievable coverage.
() 7
3 -7
o 7/
3.1 7
/ —ALS
~—SGD
2.1 ' ' ' ' ' ' ' ' ' SVD
2 4 6 8 10 12 14 16 18 20
Number of runs

Q2: How efficiently can an ensemble with a
single graph explore the behavior space?

e Spread

14 = \ = = Upper bound
~<_ ; ——=<1076, 2.0>
1.2 S~< e
S —— - ————— _ _<10A6, 2.5>
) T == <1076, 2.75>
——<10"6, 3.0>
o —<10"7, 2.0>
20.8
3 <1077, 2.25>
2 ——<10"7, 2.5>
0.6 <1077, 2.75>
<1077, 3.0>
0.4 E— <1078, 2.0>
<1078, 2.25>
<1078, 2.5>
0.2
<1078, 2.75>
2 3 4 5 6 7 8 5 10 11 <10”8, 3.0>

Number of runs

Single-graph ensembles achieve higher spread than single-algorithm ensembles.

Q2: How completely can an ensemble with a
single graph explore the behavior space?

* Coverage

= = Upper bound

5.1 ——<10"6, 2.0>
——<1016, 2.25>

4.6 ——<10"6, 2.5>
_ - <1076, 2.75>

4.1 - ——<10"6, 3.0>

a0 -7 ——<107, 2.0>
g 3.6 == <1017, 2.25>

S ——<1017, 2.5>
31 <1077, 2.75>

[— <1077, 3.0>

2.6 <1078, 2.0>
<1078, 2.25>

21 <1078, 2.5>
<1078, 2.75>

2 3 4 5 6 7 8 9 10 11 <108, 3.0>
Number of runs

What aspects of diversity in algorithms and graphs contribute to
this improvement? Let’s look into the members of ensembles

achieving best spread and coverage...

Ensemble Size Ensemble Members (Runs)

<ALS, 10°, 3.0>, <SGD, 108, 2.0>, <TC, 10°, 2.0>,

S <SSSP, 107, 3.0>, <ALS, 10°, 2.75>
Best 10 ALS, SGD, TC, SSSP, ALS, TC, SGD, ALS, KM, SVD
Spread 15 SSSP, ALS, KM, SGD, ALS, TC, SGD, ALS, TC, SSSP, ALS,
SGD, TC, SVD, ALS
20 SSSP, ALS, TC, SGD, ALS, TC, SGD, ALS, KM, SSSP, ALS,
SGD, KM, SVD, ALS, TC, SGD, ALS, SGD, TC
5 <TC, 106, 2.5>, <KM, 106, 2.25>, <AD, 107, 3.0>,
<ALS, 103, 2.0>, <KC, 10°, 2.5>
Best 10 AD, SVD, KM, ALS, TC, KC, KM, ALS, KM, NMF
Coverage 15 KM, NMF, ALS, AD, SVD, KC, KM, ALS, KM, KM, SVD,

PR, ALS, TC, NMF

20 AD, SVD, KM, ALS, TC, KC, KM, ALS, KM, SGD, NMF,
KM, ALS, NMF, PR, TC, NMF, SSSP, ALS, AD

Q4: Which algorithms contribute most often to the

best ensembles for spread and coverage?

* For spread: ALS, SGD, TC, ...

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

1 Frequency of Algorithms in Top100 Sets

55 runs (Spread)

10 runs

“ 15 runs

“ 20 runs

CcC KC TC SSSP PR AD KM ALS NMF SGD SVD

Q4: Which algorithms contribute most often to the

best ensembles for spread and coverage?

* For coverage: KM, ALS, AD, TC, ...

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0.05

0.45 -

Frequency of Algorithms in Top100 Sets

%5 runs (Coverage)

10 runs

& 15 runs

“ 20 runs

CC KC TC SSSP PR AD KM ALS NMF SGD SVD

Reduce Ensemble Complexity (1 of 2)

e Spread

1 —Limited algorithms

—Limited graphs
Limited runtime

O
Vo)
v

O
©

Fraction of Best Spread
o
00
(Ua)

0.8 \\
0.75
0.7
> 10 Number of runs 15 20

Reduce Ensemble Complexity (2 of 2)

* Coverage
1 —Limited algorithms

%0.95 —Limited graphs
v Limited runtime
S 0.9
@
o 0.85
©
g 0.8 \
5
O
®© 0.75
L

0.7

> 10 Number of runs 12 20

Previous Benchmarking Efforts (1 of 2)

 Graph500 (BFS on single graph)
e B. Elser et al. (K-Core over 7 graphs)
- Benchmarks drawn from single graph or algorithm.

 W. Han et al. (PageRank, Connected Components over 3
graphs)

- Benchmarks combining only a small set of simple
algorithms.

M. Han et al. (4 simple algorithms over 5 graphs)
e S.Salihoglu et al. (5 algorithms over 5 graphs)

- Ad-hoc benchmarks exploring only a small part of the
whole behavior space.

Previous Benchmarking Efforts (2 of 2)

e Y. Guo’s work (5 algorithms and 7 graphs) is the closest to
ours. They recognize the need to explore algorithm and

graph diversity.
- “Thorough” benchmarking without any proof of real
thoroughness.

< In contrast, we have formulated a space and clear metrics
for assessing thoroughness.

