
Accelerating In-situ Feature Extraction of Large-Scale
Combustion simulation with Subsampling

Sidharth Kumar, Steve Petruzza, Duong Hoang, Valerio Pascucci
Scienti�c Computing and Imaging Institute, University of Utah

{sidharth,spetruzza,hoang,pascucci}@sci.utah.edu

Abstract
The increasing gap between available compute power and I/O ca-
pabilities is driving more users to adopt in-situ processing capabili-
ties. However, making the transition from post-processing to in-situ
mode is challenging, as parallel analysis algorithms do not always
scale well with the actual simulation code. This is observed because
these algorithms either involve global reduction operations with
signi�cant communication overheads or have to perform an over-
whelmingly large amount of computation. In this work we propose
a software stack, designed specially to expedite parallel analysis
algorithms, thus making it possible for them to work in in-situ
mode. Our software stack comprises of data-reduction techniques,
sub-sampling and compression, used to reduce the computation
load of the analysis algorithm. For better approximation of data,
we can also use wavelets instead of sub sampling. We demonstrate
the e�cacy of our pipeline using two analysis algorithms, parallel
merge tree and isosurface rendering. We also study the trade-o�
between the I/O gains and the corresponding error induced by the
data reduction techniques. We present results with KARFS simula-
tion framework run on the Tesla cluster of the Scienti�c computing
and Imaging institute at the University of Utah.

1 Software stack for In-situ analysis
Besides being scalable, the time to completion for any in-situ analy-
sis algorithm should only be a small fraction of the actual simulation
time. This hard constraint makes it di�cult for parallel analysis
algorithms to transcend from post-processing to in-situ mode. With
out software stack (see Figure 1), we hope that any parallel anal-
ysis algorithm can make this transition. Depending on the needs,
algorithms can select which component of the software stack to
use.

APPLICATION/SIMULATION

SUBSAMPLING

WAVELET
TRANSFORMATION

IN-SITU ANALYSIS

COMPRESSION

Figure 1. Software stack for in-situ analysis.

1.1 Subsampling
We use Hierarchical Z [4] order space-�lling curve to sample the
data domain. The space �lling curve traverses the grid in such an
order that a coarse representation of the grid is �rst obtained, and
is further re�ned as one moves along the curve. HZ order has been
previously used for creating multi-resolution representations of

Coarse to fine

Figure 2. Sub-sampling a 162 data with sub-sampling rates 4 (left)
and 2 (right) (both X and Y dimensions).

scienti�c data [1]. At every iteration (resolution level) we down-
sample in all three dimensions (�rst in X, then in Y and then in Z)
leading to a data reduction in size by a factor of 8. This is similar to
octree-style decomposition, where the 3D domain is decomposed
into eight octants at a time. Note that with a sampling rate s, we
select one sample every s samples in each dimension. Figure 2
shows an 162 dataset sampled at rate of 4 and 2.

1.2 Wavelets and compression
Subsampling is inexpensive but is often not satisfactory for some
analysis tasks such as visualization, as these tasks are sensitive to
aliasing and often bene�t from a low-pass �lter on the original data.
To this end, one of the future directions for our work is to enable
discrete wavelet transform (DWT) of the dataset that can be used to
make better approximations. We also intend to add a compression
component in our software stack that can be used to signi�cantly
reduce the amount of data being moved during the communication
phase of any parallel analysis algorithm.

2 Parallel merge tree
We demonstrate the e�cacy of our sampling scheme on a parallel
implementation of the merge tree topological analysis algorithm [2].
The merge tree computation is a good representative of the feature
detection algorithms. The merge tree encodes the evolution of
connected components of the super-level sets of a given scalar
function de�ned on the given domain, where the superlevel set
is the region of the domain above a certain function value. The
geometric descriptions of the super-level sets are often needed for
analysis, for example, to track features, to determine their volumes
and shapes, and for visualization.

The distributed merge tree computation involves three stages
(Figure 4). In the �rst stage every process computes its local merge
tree. The second stage joins subsets of the local trees to form the
merge trees of the joined blocks. This resultant tree is then given
to the participating local trees in the third stage, so that they can
correct themselves based on the new information received. All three
stages bene�t from data-reduction o�ered by sub-sampling.

(a) Full resolution (5123) (b) sampling rate 2 (2563) (c) sampling rate 4 (1283) (d) sampling rate 8 (643) (e) sampling rate 16 (323)

(f) Full resolution (5123) (g) sampling rate 2 (2563) (h) sampling rate 4 (1283) (i) sampling rate 8 (643) (j) sampling rate 16 (323)

Figure 3. Top row shows the features extracted from the HCCI dataset at varying sampling rates. These features, in the simulation, represent
ignition regions. Bottom row shows the isosurfaced extracted for the same dataset at di�erent sampling rates.

Figure 4. Schematic diagram showing the Parallel merge tree.

0

100

200

300

400

500

1 2 4 8 16
Sampling rate

Number of features

0

4

8

12

16

1 2 4 8 16
Sampling rate

Execution time (seconds)

Figure 5. (left) Number of features and (right) PMT time to com-
pletion for the HCCI dataset.

We ran the parallel merge tree (PMT) analysis algorithm on
dataset of resolution 5123 consisting of single precision �oats. The
dataset has been generated with the KAUST Adaptive Reacting
Flow Solvers (KARFS) [3] simulator on Shaheen II supercomputer
and represents an autoignition process in a Homogeneous-Charge
Compression Ignition (HCCI) engine. We ran the analysis runs
on Tesla cluster (512 Xeon X5550 2.67GHz Processors) at the SCI
institute of the University of Utah. We �xed the core count to 64,
while changing the sampling rate from 1 to 16 (1, 2, 4, 8, 16), hence
varying the overall resolution from 5123 (no sampling) to 323 (sam-
pling rate of 16). The PMT analysis algorithm generates the merge
tree of the dataset, which is then used to perform segmentation.
Segmentation as a result produces the features of interest for our
dataset. We have presented the extracted features for all runs in
Figure 3. We also present the total time for each of these cases in

Figure 5 (right). From Figure 3, we observe that visually there is
almost no loss in feature when down sampling from 5123 to 1283,
it is only after that resolution we start to see a discernible loss of
features. For example at sampling rate of 8 and 16 we can see fewer
features at top left corner of the dataset (see Figure 3d and 3e) .
We also observe a signi�cant improvement (close to a factor of
8) in execution time as we go from full resolution (5123) to 1/8th
resolution (2563). The rate of improvement slows down with higher
sampling rate, mainly because total time starts to get dominated
by the communication phase. We also computed the actual number
of features at all sampling rates (see Figure 5 (left)). It can be seem
that we incur a total loss of 140 features (460 at full data vs. 320
at sampling rate of 16) while going down in execution time from
11.5 seconds to 0.27 seconds. Overall, we observe that the time
to completion for the PMT algorithm reduces signi�cantly with
sub-sampling, hence, also making it possible for them to be run in
in-situ mode. Similar to PMT, we also observe a small describable
di�erences among the iso-surface extracted at di�erent sampling
rates (see Figure 3 (bottom row)). One of the future work is to
come up with heuristics to quantify the di�erences in output of the
analysis tasks.

References
[1] S. Kumar, V. Vishwanath, P. Carns, J.A Levine, R. Latham, G. Scorzelli, H. Kolla,

R. Grout, R. Ross, M.E. Papka, J. Chen, and V. Pascucci. 2012. E�cient data
restructuring and aggregation for I/O acceleration in PIDX. In High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International Conference
for. 1–11. DOI:h�ps://doi.org/10.1109/SC.2012.54

[2] Aaditya G Landge, Valerio Pascucci, Attila Gyulassy, Janine C Bennett, Hemanth
Kolla, Jacqueline Chen, and Peer-Timo Bremer. 2014. In-situ feature extraction of
large scale combustion simulations using segmented merge trees. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 1020–1031.

[3] Bok Jik Lee, Xu Xiao, Francisco E. Hernandez Perez, Hong G. Im, and Ramanan
Sankaran. 2012. KARFS: A Combustion DNS solver for Hybrid Computing
Architectures. (2012). Poster presented at 36th International Symposium on
Combustion, Seoul, South Korea, 2016.

[4] Valerio Pascucci and Randall J. Frank. 2001. Global Static Indexing for Real-time
Exploration of Very Large Regular Grids. In Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing (SC ’01). ACM, 2–2. DOI:h�ps://doi.org/10.1145/
582034.582036

2

https://doi.org/10.1109/SC.2012.54
https://doi.org/10.1145/582034.582036
https://doi.org/10.1145/582034.582036

ACCELERATING IN-SITU ANALYSIS AND VISUALIZATION WITH SUBSAMPLING
Sidharth Kumar, Steve Petruzza , Duong Hoang, Valerio Pascucci

• The increasing gap between available compute power and I/O capabilities is driving more
users to adopt in-situ processing capabilities.

• Making the transition from post-processing to in-situ mode is challenging, as parallel analysis
algorithms do not always scale well with the actual simulation code. This is observed because
these algorithms either involve global reduction operations with significant communication
overheads or have to perform an overwhelmingly large amount of computation.

• In this work we propose a software stack, designed specially to expedite parallel analysis
algorithms, thus making it possible for them to work in in-situ mode. The software stack (part
of the PIDX I/O framework) comprises of data-reduction techniques, sub-sampling and
compression, used to reduce the computation load of the analysis algorithm.

• We demonstrate the efficacy of our pipeline using the parallel merge tree analysis algorithm.
We also study the trade-off between the I/O gains and the corresponding error induced by
the data reduction techniques.

Modeling Simulation I/O
Analysis &

visualization Discovery

Feedback

DOMAIN RESTRUCTURING

SUBSAMPLING / WAVELETS

COMPRESSION

APPLICATION/SIMULATION

DOMAIN RESTRUCTURING

SUBSAMPLING

DATA AGGREGATION

FILE I/O IN-SITU ANALYSIS

DATA MOVEMENT PIPELINE FOR PIDX IN I/O MODE AND IN-SITU MODE

Sub-sampling a 16x16 data with sub-sampling rates 4 and 2

Hierarchical Z orders pace-filling curve to sample the data domain

Quad-tree sub-sampling

SUB-SAMPLING TECHNIQUES

Three stages:

1. Every process computes its local merge tree.
2. Subsets of the local trees are joined to form the merge

trees of the joined blocks.
3. The resultant tree is given to the participating local

trees, they then correct themselves based on the new
information.

All stages benefit from data-reduction by sub-sampling.

PARALLEL MERGE TREE (ANALYSIS ALGORITHM) PIDX I/O SCALING (left) AND PMT SCALING (right)

PIDX IN-SITU PERFORMANCE RESULTS

• Parallel merge tree analysis algorithm on dataset of resolution 512x512x512 consisting of
single precision floats, at core count 64, and sampling rate varied from 1 to 16 (1,2,4,8,16).

• Resolution varied from 512x512x512 (no sampling) to 32x32x32 (sampling rate of 16).
• The rate of improvement slows down with higher sampling rate, because total time starts

to get dominated by the communication phase
• Incur a total loss of 140 features (460 at full data vs. 320 at sampling rate of 16) while

going down in execution time from 11.5 seconds to 0.27 seconds

ISO-SURFACE AND FEATURE VISUALIZATION OF COMBUSTION DATA FOR VARYING SAMPLING RATES

Full resolution 256x256x256 128x128x128 64x64x64

IN-SITU ANALYSIS FRAMEWORK

MOTIVATION AND CONTRIBUTION

	Abstract
	1 Software stack for In-situ analysis
	1.1 Subsampling
	1.2 Wavelets and compression

	2 Parallel merge tree
	References

