
Exploring Memory Options for Data Transfer on
Heterogeneous Platforms∗

Chao Liu†
Northeastern University
liu.chao@husky.neu.edu

Janki Bhimani‡
Northeastern University
bhimani@ece.neu.edu

Miriam Leeser
Northeastern University

mel@coe.neu.edu

1 INTRODUCTION
Heterogeneous platforms that use GPUs for acceleration are
more and more popular in high performance and parallel
computing. However, to accelerate applications with GPUs is
not straightforward and great efforts are needed for users to
develop applications that can make use of GPUs effectively.
In our previous work, we proposed a programming frame-
work that allows users to develop parallel applications based
on a high level tasks and conduits abstraction [2]. Here we
develop GPU applications based on this framework, imple-
menting computational intensive kernels as GPU tasks in
these applications.
We target NVIDIA GPUs. Through the CUDA runtime,

there are three different types of memory: pageable memory,
pinned memory and unified memory, that can be allocated
for data transfer between CPU and GPU. The type of mem-
ory that is a good choice for a given application depends
on the characteristics of the application [1]. To facilitate
developing GPU programs and exploring different types of
CPU/GPU memory transfer for performance optimization,
we provide a uniform and simple interface to allocate space
on system main memory (host memory) and GPU memory
(device memory) in GPU task implementations. We defined
following basic class:

class MemType_t { pageable, pinned, unified };
template<typename T> class GpuMem;

When we need to allocate memory for a data set that is
used on a GPU, we can create a GpuMem object with the
desired memory type (pageable, pinned or unified). Along
with the object, we have different methods to get proper
memory pointers and complete host/device data synchro-
nization. Through this uniform interface and helper methods,
we can create a GPU task with appropriate memory type
arguments to explore the use of different memory schemes
for host/device communication easily and effectively.

2 EXPERIMENTS AND ANALYSIS
To demonstrate the use of GPU task based applications and
analyze the performance of different memory for CPU/GPU
∗No need of demo setup.
†Graduate student of ECE at Northeastern University
‡Graduate student of ECE at Northeastern University

transfer, we developed a benchmark set that currently in-
cludes the ten applications shown in Table 1.

Table 1: Benchmarks

Application Domain
Image Rotation(Rotate) Image Processing
Color Conversion(YUV) Image Processing
Matrix Multiply(MM) Linear Algebra
2D Heat Conduction(HC) Linear Algebra
MD5 Calculation(MD5) Cryptography
K-means Clustering(Kmeans) Data Mining
N-body simulation(Nbody) Space Simulation
Ray tracing(Raytrace) Computer Graphics
Bread First Search(BFS) Graph Algorithm
Nearest Neighbors(NN) Data Mining

These applications involve a variety of domains and we
implement the parallel version with GPU tasks to make use
of GPU for acceleration. For each application, we prepare
three different sizes of workload in our experiments, which
are referred to as Small, Medium and Large (S, M, L). Our
test platform includes three different GPUs: NVIDIA Tesla
C2070, NVIDIA Tesla K20m, and NVIDIA Tesla K40m. Tesla
C2070 is NVIDIA Fermi architecture GPU and Tesla K20m
and K40m belong to NVIDIA Kepler architecture.We run
sequential implementations on an Intel Xeon E5-2650 CPU,
recording the runtime as the baseline. All the speedup results
are computed with regard to this baseline normalized by log2
for convenience.

We first test the effect of using different types of memory
in our benchmarks. With the assistance of single memory
interface, we only need to pass different memory type argu-
ments to use different types of memory for the application.
Figure 1 shows the speedup results of kernel applications
running on a Tesla K20m GPU.
From the results we can see that, for Rotate, YUV, MD5

and NN, pinned memory performs better than pageable or
unified memory. For NN, there is no speedup benefit un-
less using pinned memory. For MM and BFS, using pinned
memory is also preferable. However, for large workloads,
the performance improvement by using pinned memory is

1

0

1

2

3

4

5

6

7

8

Rotate YUV MM HC MD5 Kmeans Nbody Raytrace BFS NN

Lo
gS
pe
ed
up

Pageable
Pinned
Unified

(a) Small workload

0

1

2

3

4

5

6

7

8

Rotate YUV MM HC MD5 Kmeans Nbody Raytrace BFS NN

Lo
gS
pe
ed
up

Pageable
Pinned
Unified

(b) Medium workload

0

2

4

6

8

10

12

Rotate YUV MM HC MD5 Kmeans Nbody Raytrace BFS NN

Lo
gS
pe
ed
up

Pageable
Pinned
Unified

(c) Large workload

Figure 1: Applications speedup of using different types of memory on Tesla K20m

0

20

40

60

80

100

120

Rotate YUV MM HC MD5 Kmeans Nbody Raytrace BFS NN

Pe
rc
en
ta
ge

KernelCompute Host/DeviceComm

(a)

0

20

40

60

80

100

120

Rotate YUV MM HC MD5 Kmeans Nbody Raytrace BFS NN

Pe
rc
en
ta
ge

KernelCompute Host/DeviceComm

(b)

0

10

20

30

40

50

60

70

80

90

Rotate YUV MM MD5 BFS NN

Im
pr
ov
em

en
t	P

er
ce
nt
ag
e S M L

(c)

Figure 2: Computation/Communication time cost percentage using pageable memory in (2a) Small workload, (2b)
Large workload and (2c) Host/Device communication improvement from pageable to pinned memory

0

2

4

6

8

10

S M L S M L S M L

Lo
g
S
p
e
e
d
u
p

Pageable Unified

Rotat MM Raytrac

(a) Tesla C2070 test

0

2

4

6

8

10

12

S M L S M L S M L

Lo
g
S
p
e
e
d
u
p

Pageable Unified

Rotat MM Raytrac

(b) Tesla K40m test

Figure 3: Unified memory test on different GPUs

not as good as for the small and medium workloads. So con-
sidering the scarcity of pinned memory, pageable or unified
memory may be a wise choice for applications with a large
amount of data to process. For the rest of the applications,
performance of the different types of memory are very close
under all three workloads.
Figure 2a and 2b show the percentage of computation/

communication time in the total time using pageable mem-
ory for each application. We can see that host/device com-
munication time of HC, K-Means, Nbody and Raytrace are
relatively small compared to other applications. This is also
why these four applications change less when adopting dif-
ferent types of memory. Figure 2c shows the host/device
communication improvement for some applications when
changing pageable memory to pinned memory for some of
the benchmark applications.

Next, we test the effect of using unified memory on differ-
ent types of GPUs. Figure 3 shows the test results of some

applications for different sizes of workload. We can find that
on Tesla C2070, the performance of Rotate andMMusing uni-
fied memory is much lower than pageable memory. While on
Tesla K40m GPU pageable memory performance improves a
lot. For Raytrace, because there is little host/device transfer
happened, using unified memory has little affection on appli-
cation performance. Generally, Tesla K40m which is NVIDIA
Kepler architecture GPU has better support for unified mem-
ory than Tesla C2070.
From these tests, we conclude that pinned memory can

improve host/device communication performance signifi-
cantly. For applications where memory transfer takes up a
substantial amount of total runtime, using pinned memory
improves overall performance. But we cannot use pinned
memory randomly. Unified memory eases the programming
procedure, but the implicit data transfer managed by the
underlying system and hardware support are not always
efficient. For choosing between different types of memory,
our interface saves the user extra programming efforts, thus
making the exploration of different design choices easier.

REFERENCES
[1] Janki Bhimani, Miriam Leeser, and Ningfang Mi. 2016. Design space

exploration of GPU Accelerated cluster systems for optimal data trans-
fer using PCIe bus. InHigh Performance Extreme Computing Conference
(HPEC), 2016 IEEE. IEEE, 1–7.

[2] Chao Liu and Miriam Leeser. 2017. A Framework for Developing Paral-
lel Applications with high level Tasks on Heterogeneous Platforms. In
Proceedings of the 8th International Workshop on Programming Models
and Applications for Multicores and Manycores. ACM, 74–79.

2

Exploring Memory Options for Data Transfer on
Heterogeneous Platforms

Chao	Liu;	Janki Bhimani;	Miriam	Leeser
Department	of	Electrical	and	Computer	Engineering,	Northeastern	University

Contact	Information To	read	further

Developing parallel applications for GPU platforms
and optimizing GPU related applications for good
performance is important. We develop a high level
task design framework with a concise interface to
choose and allocate desired memory blocks that are
used for host/device data transfer flexibly with little
modification of the original programs. Memory
options studied include pageable, pinned and
unified. We developed a test benchmark set
containing ten different kernel applications to test
and analyze the effect of memory options in GPU
applications.

Abstract

Our test platforms include three different NVIDIA GPUs: Tesla C2070, Tesla K20m, and Tesla K40m. Each test case was
conducted for several rounds and average results recorded. We run sequential implementations on an Intel Xeon E5-2650
CPU, recording the runtime as the baseline.

Introduction

To ease the use of different kinds of memory in a GPU task, we introduce a concise interface to select and create memory
space for host/device data transfer:

To demonstrate the use of GPU task based applications and analyze the performance of different memory for CPU/GPU
transfer, we developed a benchmark set that includes ten applications (see Table 1). For each application, we prepare three
different sizes of workload in our experiments, referred to as Small, Medium and Large (S, M, L).

Implementation	and	Application	Development

From these tests, pinned memory can improve
host/device communication performance and is
preferable for applications where memory transfer
takes up a substantial amount of total runtime. But
pinned memory is not always the best. Unified
memory eases the programming procedure, but the
implicit data transfer managed by the underlying
system and hardware support are not always
efficient. Our interface saves the user extra
programming effort, thus making the exploration of
different design choices and types of memory easier.

Conclusions

In previous work, we proposed a programming
framework that allows users to develop parallel
applications based on a high level tasks and
conduits[2]. Here we develop GPU applications based
on this framework, implementing computationally
intensive kernels as GPU tasks in each application.

Three basic procedures for each GPU task:

Target NVIDIA GPUs using the CUDA runtime. Three
different kinds of memory can be allocated in system
for host/device communication: pageable, pinned
and unified.

Experiments	and	Results

Application	high-level
main	structure

Task<GPUTask1>	gtask1;
Task<GPUTask2>	gtask2;

class	GPUTask1;
class	GPUTask2;

Framework	runtime

CPU

GPU
gpuTask
HostPart

gputTask
DevicePart

gtask1

Figure	1. GPU	tasks		based	application

*P-Host *P-Host

Host	
Memory

Device	
Memory

Inputs
host->device

Run	GPU	kernel

Results
device->host

Pageable

Pinned

Unified

Figure	2. GPU	program	procedure	and	memory	options

enum class	MemType_t {
pageable,
pinned,
unified		

}

template	<typename T>	class	GpuMem{
MemType_t m_memType;
T																						*m_hostPtr;
T																						*m_devPtr;
….		}

Task<GPUTask1>				gtask1(….,	gTask,	MemType_t::pinned,	….);

Easily define a GPU task using desired type
of memory for host/device data transfer in
an application, without change of existed
task implementations.

Table	1.	Benchmarks

Application Domain
Image	Rotation(A1:Rotate) Image	Processing
Color	Conversion(A2:YUV) Image	Processing
Matrix	Multiply(A3:MM) Linear	Algebra
2D	heat	Conduction(A4:HC) Linear	Algebra
MD5	Calculation(A5:MD5) Cryptography
K-means	Clustering(A6:Kmeans) Data	Mining
N-body	simulation(A7:Nbody) Space	Simulation
Ray	tracing(A8:Raytrace) Computer Graphics
Bread	First Search(A9:BFS) Graph	Algorithm
Nearest	Neighbors(A10:NN) Data	Mining

0

1

2

3

4

5

6

7

8

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Lo
gS
pe

ed
up

Pageable
Pinned
Unified

0

1

2

3

4

5

6

7

8

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Lo
gS
pe

ed
up

Pageable
Pinned
Unified

0

2

4

6

8

10

12

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Lo
gS
pe

ed
up

Pageable
Pinned
Unified

Chart	1. Applications	speedup	of	using	different	types	of	memory	on	Tesla	K20m.

(a)	Small	Workload (b)	Medium	Workload (c)	Large	Workload

0

20

40

60

80

100

120

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Pe
rc
en

ta
ge

KernelCompute Host/DeviceComm

0

20

40

60

80

100

120

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Pe
rc
en

ta
ge

KernelCompute Host/DeviceComm

0

10

20

30

40

50

60

70

80

90

A1 A2 A3 A5 A9 A10

Im
pr
ov
em

en
t	P

er
ce
nt
ag
e

S M L

(a) (c)(b)
Chart	2. Computation/Communication	time	cost	percentage	using	pageable memory	for	(2a)	Small	workload,	(2b)	Large	workload	and	

(2c)	Host/Device	communication	improvement	from	pageable to	pinned	memory.

Chart	3. Unified	memory	test	on	different	GPUs.

0

1

2

3

4

5

6

7

8

9

10

S M L S M L S M L

Lo
gS
pe

ed
up

Pageable Unified

A1 A8A3
(a)	Tesla	C2070	test

0

2

4

6

8

10

12

S M L S M L S M L

Lo
gS
pe

ed
up

Pageable Unified

A1 A8A3
(b)	Tesla	K40m	test

Pinned memory provides better
performance for Rotate(A1), YUV(A2),
MM(A3), MD5(A5), BFS(A9) and
NN(A10). For MM and BFS, the
performance improvement of using
pinned memory for large workloads is
not as good as for small and medium
workloads.

Chart 2(a) and (b) show that host/ device communication time of HC(A4), K-Means(A6), Nbody(A7) and Raytrace(A8) are relatively much
smaller compared to other applications. Chart 2(c) shows the data transfer improvements of using pinned memory for applications that have
substantial data transfer workload.

Unified memory tried for three applications: Rotate(A1),
MM(A3) and Raytrace(A8). Unified memory causes
performance degradation, especially on older GPUs.

Chao	Liu
Email:	liu.chao@husky.neu.edu

Miriam	Leeser
Email:	mel@coe.neu.edu

Janki Bhimani
Email:	bhimani@ece.neu.edu

1. Janki Bhimani,	Miriam	Leeser,	and	Ningfang Mi.	2016.	Design	space	exploration	of	GPU	Accelerated	cluster	systems	for	optimal	data	transfer	using	PCIe bus.	In	High	Performance	
Extreme	Computing	Conference	(HPEC),	2016	IEEE.	IEEE,	1–7.	

2. Chao	Liu	and	Miriam	Leeser.	2017.	A	Framework	for	Developing	Parallel	Applications	with	high	level	Tasks	on	Heterogeneous	Platforms.	In	Proceedings	of	the 8th	International	
Workshop	on	Programming	Models	and	Applications	for	Multicores	and	Manycores.	ACM,	74–79.		

RCL	Lab:	http://www.coe.neu.edu/Research/rcl//projects.php

	1 Introduction
	2 Experiments and Analysis
	References

