
SmallTable
Siddharth Bhatia

BITS, Pilani
siddharthbhatia2003@gmail.com

ABSTRACT
Google BigTable is a distributed storage system used across multi-
ple Google services. It is �exible and a high performance solution
for Google scale products. But no open source framework is avail-
able for a normal user. We design and implement a minimal version
of the Google BigTable called SmallTable.

KEYWORDS
BigTable, Distributed computing

1 INTRODUCTION
BigTable[2] is a compressed, high performance, and proprietary
data storage system built on Google File System[4], Chubby Lock
Service[1], SSTable (log- structured storage like LevelDB) and a few
other Google technologies. It is a sparse, distributed, persistent and
multidimensional sorted map. BigTable is scalable, self-managing
and fault-tolerant. �erefore it has been widely used across Google
services like Google Analytics, Google Earth and their personal-
ized search. We have designed and implemented an open source
implementation of BigTable called SmallTable.

2 EXPERIMENTAL SETUP
A single node runs master server and is responsible for operations
on the tables. Each datanode in the cluster runs a tablet server
and is responsible for serving the table rows. Both master and the
tablet server handle requests concurrently using threads. HDFS
replication factor for the hadoop cluster is set to 3. Client can be
run from outside the cluster as well. We used HDFS Java API, TCP
sockets for communication between the client and the cluster and
JSON for serialization and deserialization of the messages and data
storage.

3 STORAGE
3.1 Storage in Tablet Server
Each tablet server has an in memory table (memtable) serving rows
from di�erent tables. Memtables work as long as we can �t all the
data in the memory. We demonstrate this feature on the number of
records. When the number of entries in the memtable exceed a cer-
tain threshold, the table is wri�en to the HDFS. Each Tablet server
stores �les in its own directory in the HDFS-$HOME/NodeName.
Data for each tablet in a single �le (TableName@FileNumber.tablet)
where FileNumber describes how recently the �le was created.
Tablets �le contains the table records in JSON format. �e tablet
�les on the disk are immutable like SSTables in BigTable. To �nd
a particular key, we check the key in the memtable and then the
tables in �reverse chronological order using the �rst value.

3.2 Storage in Master Server
Master server handles requests for creating, updating, opening and
deleting tables. Master stores the �les in its own directory in the
HDFS - $HOME/master. For each table, the master creates a �le -
TableName.smalltable.

4 FORMAT
4.1 Table Format
TableName.smalltable

{

tableName: webtable,

families: ["lang", "content", "anchor"],

tablets: {

"A,Z" : "tabletserver1 : port",

"a,z" : "tabletserver2 : port"

}

}

4.2 Table Map Format

TableName@FileNumber.tablet

{

"key1": {

"family1": {

"field": {

5 : "value3",

}

},

"family2": {

"field2": {

19 : "value1",

10 : "value2",

5 : "value3",

}

}

},

"key2": {

"family1": {

"field": {

5 : "value3",

}

}

}

}

5 OPERATIONS AND API
We currently support the following Operations and APIs in our
framework.

(1) Create Table
(a) Client sends a create request to the master.

1

(b) Master creates a table �le on the HDFS.
(c) SmallTable table = new SmallTable(”simpletable”);

(2) View Table
(a) Client sends an open table request to the master.
(b) Master reads the table contents from HDFS and re-

turns the table data to the client
(c) table.open()

(3) Add Row
(a) Column families of the rows are validated with those

in the table.
(b) Client sends an add row request with the row data to

the tablet server.
(c) Tablet server adds the row in the memtable.
(d) table.addRow(row);

(4) Read Row
(a) Client sends a read row request to the tablet server.
(b) Tablet server searches the memtable. If key is not

found, it searches the �les on disk and returns the
row data to the client.

(c) table.getRow(key);
(5) Update Row

(a) Column families of the rows are validated with those
in table.

(b) Client sends an update row request with the row data
to the tablet server.

(c) Tablet server updates the row in the memtable.
(d) table.updateRow(key, row);

(6) Delete Row
(a) Client sends a delete row request with the row data

to the tablet server.
(b) Tablet server deletes the row from the memtable.
(c) table.deleteRow(key);

(7) Delete Table
(a) Client sends delete table request to the master.
(b) Master deletes the table �le from HDFS.

(8) Row Operations:
(a) Create row object: SmallRow row = new SmallRow();
(b) Add column value with timestamp:

row.setColumn(”familyname:foo”, ”hello”, 5);
(c) Add column value: row.setColumn(”familyname:foo”,

”hello”);
(d) Get column value with latest timestamp:

row.getColumn(”familyname:foo”);
(e) Get column value with speci�c timestamp: value =

row.getColumn(”familyname:foo”, 5);
(f) Get value with latest timestamp:

row.getValue(”familyname:foo”);
(g) Get value with speci�c timestamp:

row.getValue(”familyname:foo”, 5);
(h) Get column family value: row.getFamily(”familyname”);

REFERENCES
[1] M. Burrows. �e chubby lock service for loosely-coupled

distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 335–350.
USENIX Association, 2006.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:

A distributed storage system for structured data. ACM Trans-
actions on Computer Systems (TOCS), 26(2):4, 2008.

[3] J. Dean and S. Ghemawat. Mapreduce: simpli�ed data pro-
cessing on large clusters. Communications of the ACM, 51(1):
107–113, 2008.

[4] S. Ghemawat, H. Gobio�, and S.-T. Leung. �e google �le
system. In ACM SIGOPS operating systems review, volume 37,
pages 29–43. ACM, 2003.

2

	Introduction
	Experimental Setup
	Storage
	Storage in Tablet Server
	Storage in Master Server

	Format
	Table Format
	Table Map Format

	Operations and API

