

1

LA-UR-17-24869

Event Block Analysis for Effective Anomaly Detection on

Production HPC Systems
Zongze Li, Matthew Davidson and Song Fu

Department of Computer Science and Engineering

University of North Texas

{Zongzeli2, MatthewDavidson}@my.unt.edu, song.fu@unt.edu

Sean Blanchard and Michael Lang

UltraScale Systems Research Center

Los Alamos National Laboratory

seanb@lanl.gov, mlang@lanl.gov

ABSTRACT

As HPC systems grow dramatically in both scale and

complexity, the sheer volume of syslogs and complicated

interactions between system components make traditional

manual diagnosis and even automated line-by-line analysis

infeasible or ineffective. In this paper, we propose a System

Log Event Block Detection (SLEBD) approach that can

extract groups of log lines that appear following similar

sequences and explore these event blocks for event analysis

and prediction. Compared with the existing methods that

analyze syslogs line by line, SLEBD is capable of

characterizing system behavior and identifying intricate

anomalies at a higher level. We evaluate the performance of

SLEBD using syslogs from production HPC systems.

Experimental results show that SLEBD can process

streaming messages, which enables system operators and

other tools to understand and process events in real-time.

1. INTRODUCTION

System logs provide a valuable resource for understanding

system behavior and detecting anomalies on HPC systems.

A number of methods and tools have been proposed and

developed for log analysis. Existing approaches based on

line-by-line log analysis can discover distribution and

precedence relation between log lines. However, log

messages are not isolated. A single event of a component or

system may generate multiple messages. Analysis at the

event level can provide a richer semantics of system

behaviors and thus detect more subtle anomalies that the

traditional line-by-line analysis methods cannot find.

We use event block (EB) to refer to the log messages

that belong to a component or system event. The advantages

of event block based log analysis are clear. By converting

the original, lengthy and unstructured messages in syslogs

into a compact and structured list of EBs, the complexity of

log analysis can be significantly reduced. By working at the

EB level, we can find the patterns of events, the evolution of

system behavior, and the interactions between different

system components. Variation among instances of the same

event is also an indicator of possible anomalies.

In this paper, we present a System Log Event Block

Detection (SLEBD) approach that extracts event blocks

accurately and automatically. User only need to provide a

system log format pattern to indicate time stamp, node id

and log message. Then SLEBD can work on such format of

HPC system log. LEBD leverages the law of total

probability [1] to identify EBs from syslogs. The identified

EBs are stored in an event block database (EBD). SLEBD is

capable of processing streaming messages and analyzing

system events and behavior in real time. We can do anomaly

detection by comparing future system behavior and learned

behavior model.

2. SYSTEM LOG PROCESSING

On large-scale HPC systems, messages from compute

nodes and service nodes are often mixed together. We

separate log messages into multiple files based on node IDs.

Some events may produce multiple lines of messages,

but only show up once in a time period on one node.

Moreover, multiple messages may come together in a time

period on one node. However, they do not show up together

in log files of other nodes. We merge them into one EB if

only the log file of that node is considered. We call it a false-

merged EB.

Thus, the separated files from different nodes are

sequentially merge into a single file. This helps us identify

those EBs whose sets of messages appear on multiple nodes

and reduce the possibility of producing false-merged EBs.

3. EVENT BLOCK DETECTION METHOD

Using the processed log files as input, SLEBD performs in

two steps: 1) building EBD from the processed log files, and

2) extracting an EB list from the log message stream.

3.1 Event Block Database Generation

3.1.1 Line Pattern Creation

Log messages for the same system events are generated by

similar threads or devices. They have similar message

pattern in syslogs. For example:
ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-fe])
ACPI: PCI Root Bridge [UNC0] (domain 0000 [bus ff])

SLEBD considers words which contain alphabet letters and

ignore those having numbers in them. Comparing the

preceding two messages, their similarity is 86% (i.e., 6/7).

They have the same line pattern:

[1, “ACPI\:”], [2, “PCI”], [3, “Root”], [4, “Bridge”], [6, “\(domain”] [8,

“\[bus”]

SLEBD annotates each single line pattern with

“[Block_$num]”. Using these line patterns, we generate a

temporary pattern list from the original log file.

3.1.2 Event Block Consolidation

As an illustrating example, the original log file has five lines,

and its temporary pattern list is shown in Table 1.
Table 1. Example temporary pattern list

Block name Start and finish line number

Block_1 [1, 1]

Block_3 [2, 2]

Block_1 [3, 3]

Block_2 [4, 4]

Block_3 [5, 5]

2

LA-UR-17-24869

SLEBD then generates the block conditional

probability matrix based on the temporary block list as

shown in Table 2.

Table 2. Block Conditional Probability Matrix

 Block_1 Block_2 Block_3 Last

Block_1 50% 50%
Block_2 100%
Block_3 50% 50%

SLEBD also creates a forward range block list for each

starting block as shown in Table 3.

Table 3. Forward Block List
Block_1 Block_1, Block_2, Block_3

Block_2 Block_3

Block_3 Block_1, Block_2, Block_3, last

Bayes' theorem has an extended form, i.e., the Law of

total probability [1], which can be expressed as
 P (E|A) = ΣP (E | A ∩ Bn) * P (Bn | A) (1)

This inspires us to develop an algorithm that calculates

the probability of a block, e.g., Block_3, happening in the

forward range where another block, e.g., Block_1, appears.
 PF (A→E) = ΣPF (A→Bn) * PF (Bn →E) (2)

We use “PF (B_1→B_3)” to denote this forward range

probability as

PF (B_1→B_3)

= PF (B_1→B_2) * PF (B_2→B_3) + PF (B_1→B_3)

=50% * 100% + 50% = 100%

As PF (B_1→B_3) = 100%, greater than a predefined

threshold, we can treat them as one pair of EB for possible

merging. We also calculate the backward range probability

PB (B_3->B_1) = 100% in a similar way. This indicates

Block_1 and Block_3 are always happening together. We

thus create a new EB pattern which have the start line pattern

as Block_1 and the finish line pattern as Block_3.

 This procedure is repeated until no more EBs can be

merged. The produced EB patterns are stored in EBD.

3.1.3 Improving EBD by using multiple logs.

It is not guaranteed that EBD training files cover all possible

events in a system. To tolerate false-merged EBs and add

unseen EB patterns into EBD, SLEBD possesses a feature

that improves EBD by using multiple logs. This helps merge

newly found single line patterns and add them to EBD. It

does not merge existing EB patterns with newly found EB

patterns. These assure that new EB patterns can be captured

and they do not affect existing EB patterns.

3.2 Event Block Extraction

SLEBD uses stack for messages from each node and records

the number of log lines that have been received and

processed for that node. For each log line, SLEBD generates

a line pattern and searches for a possible EB pattern in EBD.

If this line is the start of a block pattern, then the block ID

and log line number is pushed into the stack for the node. If

the line is the end of a block pattern, then the block ID saved

at the top of the stack is popped out and compared with the

end of the block pattern. In case that they match, this block

ID and the log line number are written in an EB list report. If

not, SLEBD stores them in a conflict list for further analysis

and check if these two EB patterns are false-merged.

4. EXPERIMENTS ON MUTRINO HPC SYSTEM

We test SLEBD using logs collected from the Mutrino HPC

system which is hosted at Sandia National Laboratories. The

dataset has 553 console logs. We use the first 50 files for

EBD building and the rest 503 files for event block

extraction. We have detected 1409 single line patterns from

the 50 building files, and finally got 737 EB patterns. Table

4 shows the results from EBD building. Table 5 presents

those from EB extraction.
Table 4. EBD Building Results on Mutrino

Total number of log lines 617,255

Total number of valid lines 592,978

EB count 396,196

Number of lines covered by

EBs

595,849

Single line patterns count 1,409

EB coverage ratio 96.5% (595,849/617,255)

Learned EBD count 737

Single line EB patterns 635

Multi line EB patterns 102

Table 5. Event Block Extraction Results on Mutrino

Total number of log lines 2,548,174

Total number of valid lines 2,455,553

EB count 894,487

Number of lines covered by

EBs

1,501,461

EB coverage ratio 59%

We find that some files used in EB extraction have a

coverage lower than 20%. This infers that these files have

new information that the EBD building phase does not have.

We can explore them to enhance EBD.

5. CONCLUSIONS

Attractive features of SLEBD include that 1) it generates an

event block pattern database from system logs. Users can

use EBD to process real-time message streams. 2) It updates

EBD by continuously analyzing multiple log files. The EBD

can be evolved at run time. 3) It analyzes EB lists to

identify the characteristics and dynamics of EBs, which

enables operators to monitor system behavior and identify

anomalies. For example, we can explore frequent sequential

pattern mining methods [2, 3] on EB lists to capture

execution sequence among EBs.

ACKNOWLEDGMENT

This work was supported in part by the U.S.

Department of Energy and LANL ASC funding. The

publication has been assigned the LANL identifier LA-UR-

17-24869.

REFERENCES

[1] David Niju. “Law of Total Probability”. Available at:

https://ssrn.com/abstract=1310502.

[2] Mohanmmed J. Zaki. “SPADE: An Efficient Algorithm for Mining
Frequent Sequences”, Machine Learning, 42, pp. 31–60, 2001.

[3] Jiawei Han, Jian Pei, Behzad Mortazavi-asl, Qiming Chen, Umeshwar

Dayal, and Mei-Chun Hsu. “FreeSpan: frequent pattern-projected
sequential pattern mining”. In ACM SIGKDD, 2000.

Event Block Analysis for Effective Anomaly Detection on Production HPC Systems

Motivation
HPC systems grow dramatically in both scale and complexity. The

traditional manual diagnosis and even automated line-by-line analysis
on HPC system log become infeasible or ineffective.

We found a single event of a component or system may generate
multiple messages. We use Event Block (EB) to refer to such a set of
log messages.

We propose a System Log Event Block Detection (SLEBD)
approach that extract groups of log line that appear following similar
sequences and explore these event blocks for event analysis and
prediction.

System Log Preprocessing
Messages from compute nodes and service nodes are often mixed

together.
We group messages in a predefined time window from one node

into a file.

Modeling System Logs

1. Creating single Line patterns
Log messages for the same system events are generated by similar

threads or devices. They have similar message pattern. For example:
ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-fe])

ACPI: PCI Root Bridge [UNC0] (domain 0000 [bus ff])
SLEBD considers words which contain alphabet letters and ignore

those having numbers in them. Comparing the preceding two
messages, their similarity is 86% (i.e., 6/7). They have the same line
pattern as

[1, “ACPI\:”], [2, “PCI”], [3, “Root”], [4, “Bridge”], [6, “\(domain”]
[8, “\[bus”]

SLEBD annotates each single line pattern with a [message_$num].
Using these line patterns, we generate a temporary pattern list from
the original logs.

2. Generating line pattern list and conditional probability matrix

Convert original logs into line pattern list

Generate forward conditional probability matrix

Event Block Detection Method

1. The Law of total probability
Bayes' theorem has an extended form, i.e., the Law of total

probability [1]:
P (E|A) = ΣP (E | A ∩ Bn) * P (Bn | A)

2. Closest message pair detection
We then detect each message’s closest messages which tend to

happen together in a short range. We design a function to calculate
the probability that message_B happens when message_A happens:

where Message_i is the i-th message directly following Message_A.
We use PF (M_1→*M_3) to denote the probability that

Message_3 appears in Message_1’s forward range and
PB(M_1→*M_3) to denote that Message_1 appears in Message_3’s
backward range. In our example:

PF(M_1->*M_3)
= PF(M_1->M_3) + PF(M_1->M_2) * PF(M_2->M_3)
= 50% * 100% + 50% * 100% = 100%
We also generate a backward conditional probability matrix and

calculate backward range probability in the same way:
PF(M_1->*M_3) = 100% and PB(M_1->*M_3) = 100%.
Since both probabilities are above a pre-defined threshold. We say

Message_1 and Message_3 are a pair of closest messages that can be
merged into one event block.

3. Event Block Consolidation
After finding the closest message list:

We merge closest messages together into an Event Block and
annotate this block with a name as [Block_$num].

System Log Modeling with Event Blocks
After detecting all event block patterns from the learning file set,

SLEBD converts original log files or streaming log messages into a
single line pattern list and replaces line patterns which belong to a
block by its corresponding block name and line numbers in the log file
or message stream.

In our experiment, the test log file is converted to:

Experimental Results
We test SLEBD using logs collected from Mutrino HPC system. The

dataset has 553 console logs. We use the first 50 files to build our EB
database.

Table 1. Experiment result on Muitrino log

Figure 1. Distribution of multi-line event blocks.
We also extract event blocks from the rest 503 log files and

compare them with the results from the first 50 files. Groups 13 and
14 show some change of system configuration or behavior.

Figure 2. Multi-line event block distribution among 20 EB groups.

Conclusions
SLEBD possesses the following attractive features.

1) It automatically builds an event block database (EBD) from logs.
2) It uses EBD to process and analyze real-time message streams.
3) It updates EBD by continuously analyzing multiple log files.
4) It analyzes EB lists to identify characteristics and dynamics of EBs

for system monitoring and anomaly detection.

References
[1] David Niju. “Law of Total Probability” (December, 2008). Available at:

https://ssrn.com/abstract=1310502.
[2] Mohanmmed J. Zaki. “SPADE: An Efficient Algorithm for Mining Frequent

Sequences”, Machine Learning, 42, pp. 31–60, 2001.
[3] Jiawei Han, Jian Pei, Behzad Mortazavi-asl, Qiming Chen, Umeshwar Dayal, and

Mei-Chun Hsu. “FreeSpan: frequent pattern-projected sequential pattern mining”.
In Proc. of ACM Conference on Knowledge Discovery and Data Mining (KDD), 2000.

Zongze Li, Matthew Davidson and Song Fu
Department of Computer Science and Engineering, University of North Texas

{Zongzeli2, MatthewDavidson}@my.unt.edu, song.fu@unt.edu

Sean Blanchard and Michael Lang
UltraScale Systems Research Center, Los Alamos National Laboratory

seanb@lanl.gov, mlang@lanl.gov

Message name Start and finish line number

Message_1 [1, 1]

Message_3 [2, 2]

Message_4 [3, 3]

Message_1 [4, 4]

Message_2 [5, 5]

Message_3 [6, 6]

Message_4 [7, 7]

Message_1 Message_2 Message_3 Message_4 Last

Message_1 50% 50%

Message_2 100%

Message_3 100%

Message_4 50% 50%

Block name Start and end line number

Block_1 [1, 3]

Block_1 [4, 7]

Total number of log lines 617,255

Total number of valid lines 592,978

Learned EBD count 737

Single line EB patterns 635

Multi line EB patterns 102

Event block (EB) count 396,196

Number of lines covered by EBs 595,849

Single line patterns count 1,409

EB coverage ratio 96.5% (595,849/617,255)

Message name Closest Message

Message_1 Message_3

Message_3 Message_4

Event Block name Message list

Block_1 Message_1, Message_3, Message_4

43

19

10

6 6

2 2 2 3
1 2 1 1 1 1 1 1

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11 12 18 27 28 37 67 342

N
u

m
b

e
r

o
f

EB
s

Event block size

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fr
e

q
u

e
n

cy
 D

is
tr

ib
u

ti
o

n

EB Groups

50 files 503 files

LA-UR-17-24869

