
E�icient O�load Computing for Large-scale Electronic
Structures with Multiple Manycore PCI-E Devices

Extended Abstract

Yosang Jeong
Korea Institute of Science and Technology Information

Daejeon 34141, Republic of Korea
yosang.jeong@kisti.re.kr

Hoon Ryu∗
Korea Institute of Science and Technology Information

Daejeon 34141, Republic of Korea
elec1020@kisti.re.kr

ABSTRACT
Fast computations of large-scale sparse matrices is critical in many
areas of computational science. E�cient o�oad computing with
multiple manycore PCI-E devices is discussed with a focus on simu-
lations of tight-binding electronic structures that involve 107 ⇥ 107
or larger sparse matrices. Schrödinger equations are solved in par-
allel with Lanczos method. To improve the speed with manycore
devices, the hotspot of computations, sparse matrix-vector multipli-
cations (MVmuls), is o�oaded with asynchronous o�oad technic.
We accomplish ⇠1.62x speed-up in total simulations (⇠2.64x in MV-
muls) with two Intel Xeon Phi Knights Corner coprocessors per
each node, compared to the case when only host CPUs are used.
Asynchronous data-transfer technic we employed signi�cantly mit-
igates the overhead due to data-transfer between host and multiple
coprocessors, so the overhead with two coprocessors becomes just
⇠1.2x than that with a single coprocessor.

CCS CONCEPTS
•Computingmethodologies!Massively parallel algorithms;
•Mathematics of computing! Partial di�erential equations;

KEYWORDS
Tight-binding simulations, Electronic structures, Manycore com-
puting, Xeon Phi coprocessors, Multiple coprocessors

ACM Reference format:
Yosang Jeong and Hoon Ryu. 2017. E�cient O�oad Computing for Large-
scale Electronic Structures with Multiple Manycore PCI-E Devices. In Pro-
ceedings of ACM Symposium on High-Performance Parallel and Distributed
Computing, Washington D.C., USA, June 2017 (HPDC 2017), 2 pages.
DOI: yy.yyy/yyy y

1 INTRODUCTION
Manycore devices have obtained a�ention as they have potential
to increase computing capacity of a single node compared to tra-
ditional CPU-based high performance computing (HPC) systems.
While on-board manycore systems that do not need data-transfer

∗Correspondence

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPDC 2017, Washington D.C., USA
© 2017 Copyright held by the owner/author(s). xxx-xxxx-xx-xxx/xx/xx. . .$15.00
DOI: yy.yyy/yyy y

via PCI-E are released recently, o�oad computing is still impor-
tant in HPC communities since a single computing mode of 30%
in latest top HPC systems use multiple PCI-E manycore devices
such as General-Purpose Graphical Processing Units (GPGPU) and
Intel Xeon Phi Knights Corner (KNC) coprocessors. [1]. While
partial di�erential equations are the critical target of computations
in various areas of computational science, it is not easy to �nd
many research works that discuss performance enhancement of
those operations in HPC systems, where each computing node
has multiple PCI-E devices. �is work covers strategies that are
e�cient for o�oad computing with multiple PCi-E devices, using
Xeon Phi KNC coprocessors and an in-house Schrödinger equation
solver that has been developed to simulate large-scale electronic
structures. While this work focuses on a bit outdated manycore
devices (KNC), the strategy presented would be still important as
they can be directly applied to GPGPU devices or upcoming Intel
Knights Landing (KNL) coprocessors.

2 METHODOLOGY
Electronic structures of nanostructures are represented with a
sp3d5s⇤ tight-binding approach [2] that assumes nearest-neighbor
couplings. Domains of simulations are decomposed in a multi-
dimensional way with a hybrid usage of Message Passing Interface
(MPI) and OpenMP. Hamiltonian sparse matrices, which are stored
in a compressed sparse row format [3], are then decomposed in a
row-wise manner. Our Schrödinger equation solver, which com-
putes normal eigenvalue problems in a numerical perspective, is
implemented with Lanczos iterations [4] that involve sparse matrix-
vector multiplications (MVMuls). To improve the performance of
MVMuls with o�oad computing, each decomposed matrix in a sin-
gle MPI process is copied into coprocessor(s), and an input/output
vector is copied from host/coprocessors to coprocessors/host per
each iteration such that host and PCI-E devices can share the com-
puting load ofMVMuls at the same time (Fig. 1(a)) [5]. �e overhead
of data-transfer (particularly for vectors) between host and multiple
PCI-E devices in a single computing node is reduced by the technic
of asynchronous data-transfer (Fig. 1(b)).

3 RESULTS AND DISCUSSION
�e performance is benchmarked in a cluster testbed that con-
sists of 3 computing modes connected with an in�niband network.
Each computing node has 2, 10-core Intel Xeon E5-2670 v2 (2.5GHz)
processors, 128Gmemory and 2 KNC 7120 coprocessors. �e perfor-
mance of o�oad computing, measured for end-to-end simulations
of a Si:P quantum dot [6] that has a cuboid Si layer of 30⇥80⇥80

HPDC 2017, June 2017, Washington D.C., USA Y. Jeong et al.

[100] unitcells (a ⇠15 million ⇥15 million Hamiltonian matrix), is
shown in Fig. 2 with the third control factor ”Coproc Load” indicat-
ing the fraction of MVmuls computed by coprocessors. In general,
results show excellent scalability in multiple nodes regardless of
Coproc Load and how many coprocessors are used. We observe
that the wall-time becomes minimized at 65% and 80% of Coproc
Load when a computing node has one (case 1) and two (case 2)
coprocessor(s), respectively, where ⇠1.48x (case 1) and ⇠1.62x (case
2) speed-up are observed compared to when only host CPUs are
used (Coproc Load = 0). �e speed-up in simulations in mainly due
to that of MVMuls, which turns out to be ⇠2.10x and ⇠2.64x in the
case 1 and 2, respectively.

Fig. 3 shows the time consumed by MVmuls in two components,
i.e., computation and data-transfer. Since PCI-E is a serial bus [7],
the case 2, which transfers vectors to two coprocessors, is expected
to have 2x overhead of data-transfer compared to the case 1. Due
to the scheme of asynchronous data-transfer (Fig. 1), however, the
overhead in the case 2 is just ⇠1.2x of that in the case 1. �e speed-
up of MVMuls (including data-transfer) in the case 2 becomes ⇠1.3x
against the case 1, where the speed-up of computation is ⇠1.53x.

4 CONCLUSIONS
Strategies of e�cient o�oad computing for large-scale electronic
structure simulations are discussed. Technics of asynchronous
o�oad presented in this work, which include simultaneous exe-
cutions of large sparse matrix-vector multiplications by host and
PCI-E devices, and asynchronous data-transfer between a single
host to multiple PCI-E devices, lead non-negligible performance
improvement. While here we used Xeon Phi KNC coprocessors as
target PCI-E devices, technical details of this work are still applica-
ble to GPGPU devices, and upcoming Xeon Phi KNL coprocessors.

ACKNOWLEDGEMENTS
�is work has been carried out as Intel Parallel Computing Center
(IPCC) project funded by Intel Corporation, USA. KISTI-Accelerator-
Testbed (KAT) clusters supported by Korea Institute of Science and
Technology Information (KISTI) have been extensively used. H.
Ryu appreciates J. H. Sohn for all the support for researches.

REFERENCES
[1] Top 500 List. h�ps://www.top500.org/lists/2016/11. (2016).
[2] J. M. Jancu, R. Scholz, F. Beltram. and F. Bassani. 1998. Empirical spds⇤ tight-

binding calculation for cubic semiconductors: General method and material
parameters. Physical Review B 57 (1998), 6493.

[3] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. 2009. Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using com-
pressed sparse blocks. In Proceedings of the annual Symposium on Parallelism in
Algorithms and Architectures (SPAA), 430-435.

[4] C. Lanczos 1950. An iteration method for the solution of the eigenvalue problem
of linear di�erential and integral operators. Journal of Research of the National
Bureau of Standards 45, 4 (1950), 255-282.

[5] H. Ryu, Y. Jeong, J. Kang, and K. Cho. 2016. Time-e�cient simulations of tight-
binding electronic structures with Intel Xeon PhiTM many-core processors.
Computer Physics Communications 209 (2016), 79-87.

[6] B. Weber, Y. H. M. Tan, S. Mahapatra, T. F. Watson, H. Ryu, R. Rahman, L. C. L.
Hollenberg, G. Klimeck, and M. Y. Simmons. 2014. Spin blockade and exchange
in Coulomb-con�ned silicon double quantum dots. Nature Nanotechnology 9
(2014), 430-435.

[7] D. Mayhew, and V. Krishnan. 2003. PCI express and advanced switching: evolu-
tionary path to building next generation interconnects. In Proceedings of the
IEEE Symposium on High Performance Interconnects (HOTI), 21-29.

Figure 1: Strategies for asynchronous o�load computing. (a)
A scheme of asynchronous data-transfer. Host transfers vec-
tors to the �rst coprocessors, then to the second coproces-
sors without waiting the completion of the �rst transfer. (b)
A scheme of asynchronous MVMuls, with which MVMuls
are performed simultaneously in host and coprocessors.

Figure 2: Performance of simulations with 1/2/3 MPI pro-
cesses (nodes), when a single MPI process uses (a) one copro-
cessor and (b) two coprocessors. A Coproc Load of 65%/80%
gives the best speed with 1/2 coprocessor(s), where corre-
sponding speed-up compared to the CPU-only case becomes
⇠1.48x/⇠1.62x. �e scalability is quite nice regardless of Co-
proc Load and how many coprocessors are used.

Figure 3: Performance of MVmuls with 1/2/3 MPI processes
(nodes), when a single MPI process uses (a) one coprocessor
and (b) two coprocessors. With two coprocessors, the overall
speed (computing+data-transfer) is improved by⇠1.3x on av-
erage, compared to that with one coprocessor, and the aver-
age overhead of data-transfer increases by just⇠1.2x (not 2x)
due to the scheme of asynchronous data-transfer we used.

Efficient Offload Computing for Large-scale Electronic
Structures with Multiple Manycore PCI-E Devices
Yosang Jeong and Hoon Ryu* (*Correspondence: elec1020@kisti.re.kr)
Korea Institute of Science and Technology Information, Daejeon 34141 Republic of Korea.

Results

Methodologies

Numerical Algorithm: Schrödinger Solver
• Lanczos method (Ref. [4]): Normal eigenvalue prob.
• Issues: Sparse matrix-vector multiplier (MVmul)

Parallelization and Offload Computing
- Scheme of Domain Decomposition

Z

Thread 0 Thread 1

Thread 2 Thread 3

Adiag(0)

Adiag(1)

W(0,1)

W(1,0)

Adiag(2)

W(1,2)

W(2,1)

Adiag(3)

W(2,3)

W(3,2)

Rank 3

Rank 2

Rank 1

Rank 0

Mapping to
TB Hamiltonian

R
an

k
0

R
an

k
1

R
an

k
2

Thread 0

Thread 1

Thread 2

Thread 3

R
an

k
3

Y
X

Slab 0

Slab 1

Slab 2

Slab 3

• Decompose along X-direction with MPI
• Decompose along Y and Z-direction with OpenMP

[Scheme of Domain Decomposition]

Performance Test Problem and Computing Environment
• A phosphorus atom embedded in a 30x80x80 [100] unitcell silicon layer

(a cuboid Si:P quantum dot – Ref. [6]): has ~1.5M atoms and involves
a ~15Mx15M Hamiltonian matrix with a 10-band spds* TB model

• Intel® Xeon E5-2670 v2(10 core) x2 w/ Xeon Phi KNC 7120A x2 per Node
• 20 threads per MPI rank / 240 threads per Coprocessor

Reduction in Transfer-time w/ Asynchronous Data-transfer

[Transfer-time and Multiplication-time in MVmul-time]

• Not 2x but 1.2x longer transfer-time (w/ 2 coprocs. vs single coproc.)
• 1.26x faster MVmul even with 1.2x longer transfer-time w/ 2 coprocs.

- MVmul-time here includes transfer-time.

Introduction

Nanostructure Modeling: Needs for HPCs
• Characteristics of nanoscale materials affected by:

- Structural confinement: Quantum physics
- Roughness/Crystal orientations etc.: Atomistic effects

• Tight-binding (TB) model (Ref. [2])
- 10/20 orthogonal basis to model one atom
- Easy to handle atomistic effects

• Issue in large-scale computing: needs for HPCs
- Experimentally realizable nanostructures: size of a few
tenth of nanometers involving multi-million atoms

- Sizes of system matrices: proportional to the number
of atoms in structures (scaling factor = # of basis)

Latest Trends in HPC: Offload Computing
• 29 of Top 100 HPCs use multiple PCI-E devices (Intel®

KNC coprocs. or Nvidia® GPU devices) / node (Ref. [1])
• Intel® Knights Landing (KNL) will be also available soon

as PCI-E devices
• Involves data-transfer between host and PCI-E devices
• Issue in performance: The overhead of multiple

data-transfer to multi PCI-E devices

- Offload technic w/ Multiple coprocessors

• Host and coprocs. share computing load of MVmul.
- Matrices are decomposed in a row-wise (Ref. [5])

[Asynchronous Matrix-Vector Multiplication]

Host

Coproc 0

Coproc 1

Matrix-Vector
Multiplication

Matrix-Vector
Multiplication

Matrix-Vector
Multiplication wait

offload
instruction

finish
signal

• Host transfer vector to all coprocs. in every iteration
• Overhead in offload computing with multiple coprocs.

can be reduced with asynchronous data-transfer

[Asynchronous Data-transfer]

Performance Improvement w/ Offload Computing

[Computing-time with Single Coprocessor (Up) and 2 Coprocessors (Down)]
• Coproc Load: The ratio of computing

load (MVmul) in KNC coprocs.
• Optimal performance is observed at

- Coproc load of 65% (1 coproc.)
- Coproc load of 80% (2 coprocs. a))

a) 40% per each coproc.
• Excellent strong scalability

- Tested up to three computing nodes
- 2.6x faster at 65% load in 1 coproc.
- 2.5x faster at 80% load in 2 coprocs.

Coproc Load(%)
Wa

ll
-t

im
e

(s
ec

s)

nCoprocessors=1
nRanks=1

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=1
nRanks=2

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=1
nRanks=3

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=1

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=2

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=3

Wa
ll

-t
im

e
(s

ec
s)

1.48x

1.62x

1.10x

2.10x

2.64x

1.26x

nRanks=1

[Optimal Performance in a Single Node]

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=1
nRanks=1

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=1
nRanks=2

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=1
nRanks=3

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=1

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=2

Coproc Load(%)

Wa
ll

-t
im

e
(s

ec
s)

nCoprocessors=2
nRanks=3

Acknowledgements
This work has been carried out as Intel® Parallel Computing Center (IPCC)
project funded by Intel Corporation, USA. KISTI-Accelerator-Testbed (KAT)
clusters supported by Korea Institute of Science and Technology Information
(KISTI) have been extensively used. H. Ryu appreciates J. H. Sohn for all
the support for researches.

Host

Coproc 1

transfer V to Coproc 0
transfer V to Coproc 1

wait
offload

instruction
finish
signal

Coproc 0

Reference [1] Top 500 List https://www.top500.org/lists/2016/11/
[2] Phys. Rev. B 57, 6493 (1998)
[3] Proc. SPAA, 430 (2009)
[4] J. Res. Natl. Bur. Stand. 45, 255 (1950)
[5] Comput. Phys. Commun. 209, 79 (2016)
[6] Nat. Nanotechnol. 9, 430 (2014)
[7] Proc. HOTI, 21 (2003)

	Abstract
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Conclusions
	References

