
E�icient Placement of Multi-Component Applications in
Edge Computing Systems

Tayebeh Bahreini (*Ph.D. Student)
Dept. of Computer Science
Wayne State University
Detroit, Michigan 48202

tayebeh.bahreini@wayne.edu

Daniel Grosu
Dept. of Computer Science
Wayne State University
Detroit, Michigan 48202
dgrosu@wayne.edu

ABSTRACT
One of the main challenges in Mobile Edge Computing (MEC)
is determining an e�cient placement of the components of a
mobile application on the edge servers that minimizes the cost
incurred when running the application. We address the prob-
lem of multi-component application placement in edge com-
puting by designing an e�cient on-line algorithm that solves it.
We also introduce a Mixed Integer Linear Programming formu-
lation of the multi-component application placement problem
that takes into account the dynamic nature of users’ location
and the network capabilities. We perform extensive experi-
ments to evaluate the performance of the proposed algorithm.
Experimental results indicate that the proposed algorithm has
very small execution time and obtains near optimal solutions.

CCS CONCEPTS
•Networks! Cloud computing; •Computer systems or-
ganization! Cloud computing;

KEYWORDS
edge computing, services, component placement algorithm
ACM Reference format:
Tayebeh Bahreini (*Ph.D. Student) and Daniel Grosu. 2017. E�cient
Placement of Multi-Component Applications in Edge Computing Sys-
tems. In Proceedings of HPDC’17 , Washington D.C.,USA, June 2017
(HPDC’17), 2 pages.
DOI: 10.475/123 4

�e Multi-Component Application Placement Problem.
�e MEC paradigm was introduced to solve the ine�cien-
cies of mobile cloud computing (i.e., high latencies due to the
communication between mobile devices and data-centers) by
enabling data processing at the edge of the network. One of
the main challenges in MEC is determining an e�cient place-
ment of the components of a mobile application on the edge
servers that minimizes the cost incurred when running the
application. �is is the multi-component application placement
problem (MCAPP-IM). To formulate this problem we consider
a time slo�ed system, where the locations of users may change
from one time slot to another. �e location of a user is speci�ed
by its coordinates in a two-dimensional grid of cells. A user
can change its location between two time slots, that is, it can
move into any of the neighboring cells or stay in the same cell.
�e edge system is composed of a set of servers, S = {S1, S2,
HPDC’17, Washington D.C.,USA
2017. 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

. . . , Sm }. Servers can be edge or core cloud servers having
di�erent computational powers, and therefore, di�erent costs.
Servers can be located in any cell of the two-dimensional grid
and their positions are �xed. Each application C of a user con-
sists of a set of components, C = {C1,C2, . . . ,Cn }. We do not
impose any restrictions on the communication between the
components, any component can communicate with any other
component of the application (i.e., the graph modeling the ap-
plication is not restricted). We also assume that a server can
communicate with any other server, incurring di�erent costs
for di�erent servers. �e objective is to �nd amapping between
components and servers, such that the total placement cost is
minimized. �e total placement cost in time slot t is composed
of four types of costs: (i) the cost of running component Cj
on server Si ; (ii) the cost of relocating component Cj from
server Si to server Si0 ; (iii) the communication cost between
componentCj (assigned to server Si) and the user; and, (iv) the
communication cost between components Cj and Cj0 that are
located on servers Si and Si0 , respectively. We formulated the
MCAPP problem as a Mixed Integer Linear Program (MILP)
and use the optimal solution obtained by solving it as a lower
bound on the performance of the proposed online algorithm.
Due to space limitations we will not present the MILP here.

MCAPP-IMOnlineAlgorithm. Our formulation of MCAPP
problem departs from the existing work since it does not im-
pose any restrictions on the topology of the graphs character-
izing both the applications and the physical resources. Con-
sidering this general se�ing, we design a heuristic algorithm
that solves the online version of MCAPP. In the online version
of MCAPP, the values of the cost parameters introduced in
the previous section may change every time slot and are not
known a priori. We assume that at the end of every time slot
the values of the parameters for the next slot are known and
that the proposed algorithm determines the allocation for the
next time slot based on those new values. �e proposed on-line
algorithmMCAPP-IM (where IM stands for Iterative Match-
ing) is executed every time slot and consists of two phases.
In the �rst phase, it determines the best matching between
components of the application and the edge/core servers with-
out considering the communication requirements among the
components. In the second phase, it takes into account the
communication costs between the components and performs
a local search procedure that determines the �nal solution
to MCAPP. MCAPP-IM algorithm has low time complexity

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX*

(b)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX*

(c)

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX

(d)

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX*

(e)

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX*

(f)
Figure 1: Execution time and competitive ratio vs. number of time slots: Computation-intensive case ((a) and (d));
Balanced communication-computation case ((b) and (e)); Communication-intensive case ((c) and (f)). (*CPLEX was not
able to determine the solution for T = 16 and 32 in (b) and (e), and for T = 8, 16 and 32 in (c) and (f) in feasible time, and thus, there are no bars in the
plots for those cases)

(cubic in both the number of servers and the number of com-
ponents) and adds a negligible overhead to the placement and
execution of the applications.

Experimental Results. We compare the performance of
our algorithm,MCAPP-IM, with that of an algorithm called
MATCH and with that of the optimal solution obtained by
solving the MILP formulation of MCAPP.�eMATCH algo-
rithm performs matching without taking the communication
among instances into account. We compare with this algo-
rithm in order to investigate the improvement in the quality
of the solution due to considering the communication time
among applications in the local search phase of MCAPP-IM.

We consider that the users and servers are located within a
two-dimensional grid of 150 ⇥ 150 cells. Initially, a user can
be in any cell of the grid network and its location is drawn
randomly from a uniform distribution over the locations of
the grid. We assume that the mobility of users is based on the
random walk model in a two-dimensional space, which is an
approximation of real world mobility traces. �e servers are
located within the same two-dimensional grid network and
the coordinates of their positions are drawn from a uniform
distribution. We generate several problem instances and for
each type of instance, we execute MCAPP-IM and MATCH
algorithms ten times. �e performance of MCAPP-IM is evalu-
ated by computing the actual competitive ratiowhich is de�ned
as the ratio between the value of the solution obtained by an
online algorithm and that of the optimal solution for the of-
�ine problem. �e optimal solution is obtained by solving the
MILP formulation of MCAPP with the CPLEX-12 solver. �e
MCAPP-IM and MATCH algorithms are implemented in C++
and the experiments are conducted on an Intel 1.6GHz Core i5
with 8 GB RAM system.

We investigate the performance of the MCAPP-IM algo-
rithm in terms of actual competitive ratio and execution time
on a set of medium size instances consisting ofm = 10 servers
and n = 4 components. We chose this type of instances in

order to be able to solve them optimally using CPLEX and com-
pare the performance of our algorithmwith that of the optimal
solution. We consider three types of instances, computation-
intensive, computation-communication balanced, and commu-
nication-intensive. In Figures 1 (a)-(c), we plot the total execu-
tion times (i.e., the sum of the execution times of all time slots)
obtained by MCAPP-IM, MATCH, and CPLEX on those in-
stances for di�erent values of the total number of time slots,T ,
using a logarithmic scale. �e execution time of CPLEX is sev-
eral orders of magnitude higher than the execution times of
both MCAPP-IM and MATCH for all three types of instances.
�e execution times of our proposed algorithm,MCAPP-IM,
are under 1 millisecond in all cases, making it very suitable
for deployment in real MEC systems. �eMATCH algorithm
obtains a slightly lower execution time thanMCAPP-IM but as
we will show next, this small execution time is obtained at the
expense of not being able to provide near optimal solutions to
the problem. �e reason behind this is that MATCH does not
take into account the communication between components
when determining the placement, requiring less time than
MCAPP-IM. In Figure 1 (d)-(e), we plot the actual competitive
ratios obtained by the algorithms. Since CPLEX obtains the
optimal solution, we plot its competitive ratio as 1 in those
plots. In the case of computation-intensive instances, the ac-
tual competitive ratios obtained byMCAPP-IM andMATCH
are very close to 1, thus both algorithms obtain optimal solu-
tions or solutions that are very close to the optimal. If there is
almost no communication among the components,MCAPP-
IM behaves similarly to MATCH, that is the local search step
is not actually able to improve the solution beyond that ob-
tained by matching. In the case of communication-intensive
instances, MCAPP-IM obtains much be�er competitive ratios
thanMATCH for all instances. �at means thatMCAPP-IM
is able to obtain solutions that are closer to the optimal so-
lution than those obtained by MATCH. Another important
observation is that the actual competitive ratios obtained by
MCAPP-IM are less than 2 for all the communication-intensive

2

instances considered here, that is they are independent on the
number of slots we considered.

�e experimental results show that MCAPP-IM obtains
solutions that are very close to the optimal and requires very
low execution time. For the average size instances, the ones
we expect to encounter in practice, the proposed algorithm
performs very well with respect to both the quality of the
solutions and the execution time.

3

Efficient Placement of Multi-Component Applications in Edge Computing
Systems

{ Tayebeh Bahreini and Daniel Grosu } Dept. of Computer Science, Wayne State University

Motivation
• Mobile Computing
– Many mobile applications need to perform

heavy computations.

– Some mobile applications consume a large
amount of energy.

Challenges:
⇤ Limited computation/storage resources
⇤ Limited battery life

• Mobile Cloud Computing
– Computation and storage are moved from mo-

bile devices to resource-rich servers located in
clouds.

Challenges:

⇤ High communication latency (limitation on
wireless internet bandwidth)

⇤ Inefficient for applications that need a
quick response time or have a large amount
of data transmission

• Mobile Edge Computing (MEC)
– Reduces the response time of mobile applica-

tions by allowing them to perform their com-
putation at the edge of the network.

– The edge can be any computing resource of the
network.

• Contributions
– This research addresses the multi-component

application placement problem (MCAPP) in MEC
in order to minimize the total cost of running
services.

– In the formulation of the problem, the dy-
namism of users’ location, the network’s
statistics, and different cost elements are con-
sidered.

– An efficient on-line algorithm for this problem
is developed and its performance is analyzed.

– Experimental results show that the algorithm
requires very small execution times and ob-
tains near optimal solutions

MCAPP
• Problem Setting
– A time slotted system in which the location of

users and the network’s statistics may change
from one time slot to another.

– A set of servers S = {S1, S2, . . . , Sm} that are
distributed uniformly in a mesh network.

– A mobile application with a set of components
C = {C1, C2, . . . , Cn}.

– Any component can communicate with any
other components (the graph modeling the
application is not restricted).

– A server can communicate with any other
servers, incurring different costs for different
servers.

• Objective
– Find a mapping between components and

servers, such that the total placement cost is
minimized.

– Placement costs come from different sources:

⇤ the cost of running component Cj on server
Si.

⇤ the cost of relocating component Cj from
server Si to server Si0 .

⇤ the communication cost between compo-
nent Cj (assigned to server Si) and the user.

⇤ the communication cost between compo-
nents Cj and Cj0 that are located on servers
Si and Si0 , respectively.

MCAPP-IM Online Algorithm
• MCAPP and Matching
– When there is no inter-component communica-

tion, the placement problem in each time slot is
equivalent to the matching problem.

– In the first time slot, the problem is to match
components to servers.

Matching components to servers in the first time slot

– In other iterations, the decision maker decides
whether a component stays on the current
server or migrates to another one.

Matching components to servers (in time slots t > 0)

• MCAPP-IM Algorithm
{Executed every time slot}

(i) Solve the matching problem using the Hun-
garian algorithm without considering the
inter-component communication.

(ii) Call the L-SEARCH algorithm which takes
the inter-component communication cost
into account to find the final solution to
MCAPP.

• L-SEARCH Algorithm
Do

(i) Find the bottleneck component that has
the maximum cost of communication with
other components.

(ii) Swap the bottleneck component with com-
ponents that are placed on other servers in
order to to find a lower total assignment
cost for the system.

While there is improvement

Experimental Results
• Findings
– The performance of MCAPP-IM is compared

with MATCH and the optimal solution ob-
tained by CPLEX.

– The MATCH algorithm performs matching
without taking the communication among
components into account.

– MCAPP-IM obtains solutions that are very
close to the optimal solution and requires a
reasonable execution time.

– The quality of solutions is relatively insensi-
tive to the value of T (The maximum time re-
quired to run an application).

Execution time and competitive ratio vs. T

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX

(a) Computation-intensive case

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX*

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX*

(b) Balanced communication-computation case

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

E
xe

cu
tio

n
 t
im

e
 (

m
se

c)

T

MCAPP-IM
MATCH
CPLEX*

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

C
o
m

p
e
tit

iv
e
 r

a
tio

T

MCAPP-IM
MATCH
CPLEX*

(c) Communication-intensive case

Competitive ratio = solution obtained by MCAPP-IM
solution obtained by CPLEX

Contact Information
Tayebeh Bahreini (tayebeh.bahreini@wayne.edu)

Ph.D. student - Department of Computer Science,
Wayne State University

	Abstract

