
Distributed Operating System and Scheduling for MPSoC

Ali Ahmadinia
Department of Computer Science, California State University San Marcos

ACM Reference format:
Ali Ahmadinia. 2017. Distributed Operating System and Sched-

uling for MPSoC. In Proceedings of High-Performance Parallel

and Distributed Computing, Washington D.C., USA, June 2017
(HPDC’17), 2 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Multiprocessor system on chips (MPSoCs) allow developers
to leverage the flexibility of software development, such as
multi-threaded and multi-tasked application writing, with
the computational power and hardware design flexibility of
field programmable gate arrays (FPGAs). However, where de-
velopers take advantage of the kernel of an operating system
(OS), the large variability in MPSoC manufacturers makes
the presence of such an OS an uncertainty, and therefore the
development of multi-threaded and multi-tasked application
difficult. For dedicated applications, where MPSoCs are read-
ily deployed, tasks and threads can be statically allocated
to available cores, with thread and inter-task dependencies
resolved before runtime. Threads and tasks can also be sched-
uled on available cores by running an OS on each available
core, allowing cores to service different priority tasks. Execut-
ing the same OS on available cores of an MPSoC allows us
to conceptualize a distributed OS where no overseeing kernel
is available to delegate tasks to the available cores, but tasks
and threads can still be scheduled and prioritized as if they
were. This concept introduces an interesting area of research,
where we can allocate tasks to cores which can then schedule
threads according to a predefined scheduling policy such as
round-robin. The main question is: How does the scheduling
of a distributed OS affect the performance of MPSoC exe-
cuting data-parallel applications? To address this question,
we first discuss how a distributed OS can be implemented on
an MPSoC through the use of a global system tick. We then
present a task and thread assignment methodology for such
MPSoCs, and how memory customizations can be used to
improve the performance. Previous work such as [1] created
a centralized OS for MPSoCs; however we investigate a low-
complexity implementation for the distributed unification of
cores.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

HPDC’17, June 2017, Washington D.C., USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 METHODOLOGY

We assume as input a multi-threaded and multi-tasked im-
plementation of the desired application, in our case the ap-
plication is the Viola Jones algorithm [3], where task and
thread dependencies have been resolved. Consider the case
where our data-parallel application consists of 2 main tasks
(MTs), each of which can have up to n sub-threads (STs).
We implement the thread dependencies into the ordering
of main tasks on each processor, instead of imposing priori-
ties on these threads, and relying on preemption. Each MT
is multi-threaded, where STs are allocated to cores based
on the maximal amount of data each thread might process.
Based on the inheritance relationships defined above, we can
distribute MTs and their respective STs across the available
cores through their threads and schedule them on each cores’
respective OS instance. Resolving these intertask dependen-
cies before runtime and allowing them to be inherited by
threads that will perform their computation allows threads
to be scheduled easily by an OS. We discuss next how the
concept of the distributed OS is formulated and realized on
an MPSoC. A typical OS schedules threads and tasks, based
on a predefined scheduling scheme, to available cores of the
system. In this model, the OS sits between the application
and the hardware. However, due to the large number of types
of MPSoCs that are available, OSs are typically only available
on a per core basis, such as the Xilkernel by Xilinx [4]. There-
fore, without development of the OS, cores are not unified
with respect to other cores. Cores access shared resources
through their private cacheable accesses to main memory,
and have access to timers to measure execution times. The
global timer generates a periodic global system tick which is
responsible for making cores context switch to a new thread
every tick by using interrupts. Fig. 1 depicts the time line
for a dual-core system, with 2 MTs. We can see how each
thread of the task switches out at the same time based on
the tick of the global timer. We can also see that the length
of MTs does not matter in the system, that is the number
of ticks required to service the threads of the MT, as the
allocation of tasks and threads ensures a worst-case finish
time of threads. This ensures a balance of core loads and a
deterministic run-time of threads, in terms of global system
ticks. Furthermore, we can customize the organization and
layout of memory in a MPSoC to simplify the thread and
task programming model, as described next.

3 MEMORY ARCHITECTURE

In order to optimize the program memory of the system for
reuse and resource consumption, we need to analyze how
instructions will be accessed from main memory and cached.
For a processor (core) with instruction cache (IC), instruc-
tions will be fetched from main memory and then stored in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPDC’17, June 2017, Washington D.C., USA A. Ahmadinia

Figure 1: Task switching using the round-robin time
slice

IC. If the .text section of the application can fit into the
IC, then it would be more efficient to simply store the in-
structions within the core’s cache. This concept applies to
all cores of a multi-core system. Furthermore, unnecessary
data duplication can exist, as the .text section occupies main
memory as well as the caches. We can optimize the .text
section by moving the IC resources to local memory, and
pre-loading them before runtime with the .text section. This
optimization also complements our task/thread allocation
methodology, as threads only ever exist on one core: contain-
ing thread instruction accesses locally to each core. Three
system-level improvements will be exhibited through these
optimizations: 1) Main memory traffic will be reduced. 2)
Access time to instructions will be reduced through the use
of SPMs (Scratch Pad Memory). 3) Data duplication will
be reduced. Dynamic data management (DMM) is an im-
portant consideration for MPSoC, due to the way tasks are
delegated to cores. To compliment our task/thread allocation
and scheduling methodology, we make use of static data allo-
cations [2] to allow our distributed OS to access all dynamic
data of the application at any point in time. This migration
of dynamic to static data allocations complements our task
and thread allocation methodology in two ways. First, it en-
ables us to disregard the dynamic data dependencies between
tasks and threads and use simple locking mechanisms when-
ever they are accessed in a critical region. And secondly, the
dependencies encoded into each thread ensures allocations
are accessed atomically (where required) and in the correct
temporal order: thereby removing any race conditions that
may arise.

4 EVALUATION

We have implemented up to 8-core MPSoC designs on a
ML605 development board from Xilinx [4]. We use the Mi-
croblaze soft-core processor to instantiate cores of our MP-
SoCs. We tested the ability of the distributed OS to perform
concurrent context switches with various different time slices.
Fig. 2.a illustrates the average execution time of the applica-
tion with each time slice when tested with the Barcelona test
image. We first see that our methodology reduced the execu-
tion time with increasing core counts, as is to be expected.
The frequent context switches from the 1ms time slice leads
to the largest execution times for core counts up to 4. How-
ever, for core counts from 4 to 8, we see that the less frequent

1 2 4 8

2.9

3.9

4.9

5.9

6.9

7.9

8.9

9.9

10.9

No. Cores

T
im

e
 (

s
)

Execution Time for Barcelona Test Image with Varying Time Slices

1ms Time Slice

10ms Time Slice

100ms Time Slice

(a)

1 2 3 4
0.1

0.2

0.3

0.4

No. Cores

T
im

e
 (

s
)

Execution Time Reduction through SPM Usage

Execution Time

(b)

Figure 2: (a) Execution times for different time slices.
(b) Impact of SPM on Execution Time

100ms time slice actually leads to an increase in execution
time. The reduction in execution time for the smaller time
slice with larger core numbers, and the increase in execution
time for small core numbers is an interesting observation. We
also evaluate the memory customizations of the detection
library with 1-4 cores and how effectively they complement
our distributed OS. From Fig. 2.b we can see that the the
incorporation of SPMs to accommodate the detection library
reduces the execution time of each custom memory design.
We can attribute the leveling off of the improvements to
the contention that can be experienced in centralized SPMs.
With more cores accessing the centralized resource, more
arbitration and contention may be experienced leading to
increased wait times for the data.

5 CONCLUSIONS

We have presented a distributed OS for MPSoCs, where
commercial OSs that only execute on one core are used. We
described how the application executing on the MPSoC can
be decomposed into threads and tasks. We also optimized
memory for this distributed OS. Our testing with MPSoCs
with up to 8 cores revealed that there is a trade-off between
the number of cores instantiated in the system and the fre-
quency of context switches. Through analysis of the cross-over
point of core counts and time slice periods from execution
time graphs, we found that low core counts favored a large
time slice period of 100ms, whereas large core counts favored
a small period of 1ms. Our future work will focus on provid-
ing theoretical analysis of these observations, the implication
of the time slice on thread computation complexity.

REFERENCES
[1] E. Matthews, L. Shannon, and A. Fedorova. 2012. Polyblaze:

From one to many bringing the microblaze into the multicore
era with Linux SMP support. In Field Programmable Logic and
Applications (FPL), International Conference on. 224–230.

[2] R. Panda, F. Catthoor, D. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. Kjeldsberg. 2001. Data and
memory optimization techniques for embedded systems. ACM
Trans. Des. Autom. Elec. Syst. 6, 2 (2001), 149–206.

[3] P. Viola and M. Jones. 2001. Rapid object detection using a
boosted cascade of simple features. In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition. I–511 – I–518.

[4] Xilinx. 2017. http://www.xilinx.com. (2017).

Abstract:
 Scheduling and managing tasks and threads for multiprocessor system on chips (MPSoCs) has been typically achieved with the help of centralized operating systems

(OSs).
 In this work, we investigate the scheduling and allocation of threads and tasks on MPSoCs through a distributed OS, where cores run their own separate instance of an

OS, and OS instances themselves are coordinated through a global system tick.
 Through our collaborative task/thread assignment and memory customization methodology, we find that the time slice used for context switches affects the performance

of MPSoCs, based on the number of cores present.
 Our tests with a object detection application reveal that a small slice benefits larger core counts, whereas a large slice benefits smaller core counts.

Ali Ahmadinia
Department of Computer Science and Information Systems
California State University San Marcos
Email: aahmadinia@csusm.edu

Distributed Operating System and
Scheduling for MPSoC

Task and Thread Allocations:

Task dependencies: (a) Main tasks (MTs) consist of
sub-threads (STs) (b) STs inherit the dependencies of
their parent tasks

Distributed Operating System:

Example of dual-core MPSoC where cores execute
their own instance of the Xilkernel, under synchronicity
of the global tick generated by the global timer

Thread Scheduling:

Example of task switching using the Round-Robin time
slice. Each MT can consist of a variable number of
STs, which can have a variable runtime as a result of
input data, but it does not introduce anomalies due to
the precedence of the task dependencies.

Memory Architecture:
1. Distributed Program Memory
‐ If the .text section of the application can fit into the instruction cache (IC), then it would be
more efficient to simply store the instructions within the core’s cache
‐ Optimize the .text section by moving the IC resources to local memory, and preloading them
before runtime with the .text section
‐ Complements our task/thread allocation methodology, as threads only ever exist on one core:
containing thread instruction accesses locally to each core
‐ Three system‐level optimizations will be exhibited through these:

1) Main memory traffic will be reduced.
2) Access time to instructions will be reduced through the use of SPMs.
3) Data duplication will be reduced.

2. Dynamic Data Accommodation
We make use of static data allocations to allow our distributed OS to access all dynamic data of
the application at any point in time. This migration of dynamic to static data allocations
complements our task and thread allocation methodology in two ways:

1. Enables us to disregard the dynamic data dependencies between tasks and threads
and use simple locking mechanisms whenever they are accessed in a critical region.
2. The dependencies encoded into each thread ensures allocations are accessed
atomically (where required) and in the correct temporal order: thereby removing any
race conditions that may arise.

Evaluation:
 We have implemented up to 8‐core MPSoC designs on a ML605 development
 board from Xilinx with the XC6VLX240T (‐1) FPGA.
 We use the Microblaze soft‐core processor to instantiate cores of our MPSoCs with

32KB DC and local memory, with IC contained within local memory.
 The object detection library is stored in three 64KB SPMs, whose address space is

unified to create a contiguous block of SPM resources accessible by all cores
 Execution times are obtained via separate onboard timers, and the global system tick is

varied through the board support package (BSP) of each Microblaze core.

Attribute Description

Microblaze 32KB DC and local memory, IC contained with local memory

SPM 192KB contiguous address space

Main Memory 256MB accessed over AXI4 interface

Global Syste Tick Generated via global system timer, varied via BSP, and used to schedule

threads based on round‐robin Polling

Timers One timer per core, accessed over AXI‐lite interface

Mutex Core Used for atomic resource accesses, accessed over AXI‐lite interface

Test images Barcelona, Faces, and Die‐Hard with 15,29, and1 face(s) each respectively

Trade‐offMemory CustomizationsThread Scheduling Interval

Conclusion:
 We have created a distributed OS for MPSoCs, where commercial OSs that only execute on one core are used, where threads are scheduled according to the time

slice of the round-robin polling method through a global system tick.
 There is a trade-off between the number of cores instantiated in the system and the frequency of context switches.
 Through analysis of the cross-over point of core counts and time slice periods from execution time graphs, we found that low core counts favored a large time slice

period of 100ms, whereas large core counts favored a small period of 1ms.
 Our future work will focus on providing theoretical analysis of these observations, the implication of the time slice on thread computation complexity, and also the

testing of other scheduling schemes.

	sample-sigconf.pdf (p.1-2)
	1 Introduction
	2 Methodology
	3 Memory Architecture
	4 Evaluation
	5 Conclusions
	References

	HPDC-Poster.pdf (p.3)

